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Abstract: In this study we propose robotic fiber 
fabrication method based on pulling velocity control 
and hardening force control to improve the strength of 
the fabricated fibers.  
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1  Introduction 
Fiber-shaped materials are highly desirable in 

making various functional three-dimensional (3D) 
objects. For example, hydrogel microfiber structures 
have been used to recapitulate biological tissues' 
architecture and functionality at the microscale [1]. 
fibers have also been used in actuators and sensors with 
at macro- and microrobotics[2]–[5], as well as flexible 
microfiber strain sensor with a beads-on-a-string 
structure [6]. A variety of techniques have been used 
for fiber fabrication, e.g., wet-spinning [7], dry-spinning 
[8]. So far, their strength can reach only about one-fifth 
of that of natural fibers such as spider silk fiber [9]. One 
of the reasons is that the fabrication process is either 
manual or based on open-loop regulation. As 
continuation of our previous work [10][11], in this 
study, we propose robotic fiber fabrication method 
based on pulling velocity control and hardening force 
control to improve the strength of the fabricated fibers. 
Dextran material is used as the specimen in the 
experiments. 

2 Materials and Methods 
The experimental setup shown in Figure 1 is designed 
to implement the fiber threading and characterization 
experiments for different materials.  

Figure 1: The experimental setup for robotic fiber fabrication. 
The force sensor is fixed on a frame, and the Dextran 
dispenser is mounted on a motorized precision stage. 

The setup consists of a dispenser (Nordson EFD, model 
Performus V) held on a motorized precision positioner 
(Physik Instrumente, model M404.4PD) to dispense and 
pull the silk. A needle is held on a force sensor (LCM 
Systems, model LCM UF1), which is fixed, to sense the 
pulling force after contacting the silk. The motorized 
precision positioner is controlled via a controller (Physik 
Instrumente, model C-884.4CD) using Matlab/Simulink. 
The measurement of the force sensor is acquired using 
a data acquisition (DAQ) board (National Instrument, 
model PCIe-6363). The dispenser is controlled also via 
the DAQ board. The whole setup is constructed on a 
vibration isolation table.  
The fiber threading experimental protocol is shown in 
Figure 2 consisting of the fabrication and  

Figure 2: The fiber threading experimental protocol. a) 
inserting the force sensor tip in the dispenser tube until it 
contacts the Dextran material; b) the dispenser moves away 
from the force sensor pulling the Dextran into a fiber until 
certain criteria are satisfied, e.g., in displacement or force; c) 
the system stalls for a certain amount of time to allow the 
fiber to harden under hardening force control, in this example 
the pulling velocity is 25 𝑚𝑚/𝑠 and the  controlled hardening 
force is 5 𝑚𝑁  ; d) the fiber is relaxed until e) the fiber is pulled 
further until it breaks. 
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characterization phases. In the fabrication phase, a 
sessile droplet is firstly dispensed on the top of the tip 
of the dispenser needle, a); then the tip with the 
droplet approaches and contacts the tip of the force 
sensor, b); after that, the dispenser moves away from 
the force sensor pulling the droplet into a fiber, c); the 
system then stalls for a certain period to allow the fiber 
to harden under hardening force control, e). In the 
characterization phase, the fiber is pulled further until 
the fiber breaks while the pulling force is recorded. 
From the characterization by tensile testing, stress-
strain curve can be obtained. All the experiments have 
been done under constant environmental conditions: 
temperature and relative humidity of 24 °C and a 63% 
respectively. All the experiments have been done under 
constant environmental conditions: temperature and 
relative humidity of 24 °C and a 63% respectively.  

3 Results 
To study the influence of the pulling velocity of the 
fabricated fibers, we applied four different pulling 
velocities 10, 15, 20, and 25 𝑚𝑚/𝑠. We can notice that 
the strength has a negative correlation with respect to 
the pulling velocity. The influence of the hardening 
force on the strength is also studied, we applied three 
different hardening forces for 5, 7, and 9 𝑚𝑁. We can 
notice that the strength is directly proportional to the 
hardening force. 

4 Conclusions 
Artificial fibers are widely used in a variety fields, such 
as, soft robotic, electronics, and textile technology. In 
order to improve the strength of the artificial fiber, a 
new robotic fiber fabrication method was proposed. 
The proposed method is based on controlling the 
pulling velocity and the hardening force. The 
correlation between the pulling velocity and strength 
was studied. The correlation between hardening force 
and the strength was studied as well. 
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Figure 1: The obtained breaking force with 
respect to the strain from characterization 
of the fibers fabricated with four different 
pulling velocities of 10, 15, 20, and 25 
𝑚𝑚/𝑠. b) The obtained breaking force with 
respect to the strain from characterization 
of the  fibers fabricated with three different 
hardening forces of 5, 7, and 9 𝑚𝑁. 

 

 


