
RUST Programming Language
and OPC UA Status

Veli-Pekka Salo, Wapice Oy

© Wapice
Ltd.

3

Rust - The most admired programming
language!

https://survey.stackoverflow.co/2023/#section-admired-and-desired-programming-scripting-and-markup-languages

© Wapice
Ltd.

4

› Rust was developed as a fast and memory safe alternative
to languages like C and C++

› Started 2006 as a personal project by Graydon Hoare in
Mozilla research

› We at Wapice think that Rust and OPC UA could be a good
combination in future

› While OPC UA solves security problems at protocol level,
Rust does it at source code level

Rust background

© Wapice
Ltd.

5

› General purpose, systems programming language
› Cross-platform

› Fast – can be run even on bare metal.

› Control over how memory is used

› … but still completely memory safe

› Thread safe

› Rich type system

› Debugging at compile time

› Integrated package management

› Good IDEs, Documentation, Community, etc…

What is Rust?

© Wapice
Ltd.

6

Where is Rust used?

› Amazon Web Services
› Some high-performance, secure infrastructure networking, and

other systems software (e.g. Firecracker)

› Facebook
› Source control backend was rewritten in Rust

› Dropbox
› File-syncing engine is partially built with Rust code

› Cloudflare, Coursera, Discord, …

› Rust for Linux
› “Series of patches to the Linux kernel that adds Rust as a second

programming language to C for writing kernel components”

© Wapice
Ltd.

7

› Even though security and safety is
more important than ever, the
number CVEs reported by year is
growing

› Microsoft estimate: 70% of
vulnerabilities reported to MSRC
caused by a memory issue!

› A method to prevent CVEs other
than traditional ways is needed.

Why Rust is needed?

https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/

https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/

© Wapice
Ltd.

8

1. CWE-787 Out of bounds write
› The product writes data past the end, or before the beginning, of the intended buffer

4. CWE-416 Use after free
› Referencing memory after it has been freed can cause a program to crash, use unexpected values, or

execute code

7. CWE-125 Out of bounds read
› The product reads data past the end, or before the beginning, of the intended buffer

12. CWE-476 Null pointer dereference
› A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid,

but is NULL, typically causing a crash or exit.

TOP 25 CVEs (memory type errors)

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

© Wapice
Ltd.

9

Example: Buffer overflow exploitation

© Wapice
Ltd.

10

How Rust prevents exploiting
coding errors
Ownership and Borrowing, Lifetimes, No null pointer, Bounds
checking

© Wapice
Ltd.

12

› Rust has no garbage collector (that regularly looks for no-
longer-used memory as the program runs)

› Memory is managed through set of rules that are checked at
compile time

› Each value in Rust has an owner.
› There can only be one owner to a piece of data at a time.

› No need to allocate and free the memory: When the owner goes out
of scope, the value will be dropped.

› Prevents from memory leaks.
› Memory is automatically deallocated when it's no longer needed.

Ownership

© Wapice
Ltd.

13

› Complex, but fundamental mechanism how Rust prevents
issues when accessing data

› Immutable borrowing: borrower may not change the value
› Enforces safe concurrent access of data
› No dangling references. The compiler guarantees that data will ot go out of scope

during the reference lifetime

› Separate code that intends to read only vs code that modifies data
› Allows compiler to optimize code

› Mutable borrowing: Borrower may change the value
› Borrowing rules check that only one mutable borrow exists to particular set of

data

› Prevents from data races in multithreaded applications

Borrowing

© Wapice
Ltd.

14

› “I call it my billion-dollar mistake. It was the invention of the null
reference in 1965” – Sir Tony Hoare, developer al ALGOL, 2009

› In C and C++ null pointer is a pointer that does not point to a valid
area.

› Crashing the program often serves as an entry point to exploit
vulnerabilities

› Trigger exception à Crash à Revealed debugging information à
Understand program logic à Plan subsequent attacks

› Rust enforces safe use of None through Option enum
› Some(T): Represents a value of type T.
› None: Represents the absence of a value.

No null pointers

© Wapice
Ltd.

15

› Bounds checking in arrays and slices

› Slice type
› Reference to a portion of an array or another data structure.

› Allows a safe and efficient access to a sequence of elements without owning
the data

› Standard library uses vectors and strings that automatically
resize when needed

› Ownership and borrowing rules: One thread cannot change
the buffer, when other is accessing it. ;)

No buffer overflows

© Wapice
Ltd.

16

› Immutable by default
› Mutable variables require explicit

declarations

› Type safety
› Rust is a strongly typed language that

enforces strict type checking at compile-time

› No null pointers - not allowed ;)

› No data races
› Safe concurrent use of data

Summary of Rust safety
mechanisms

› No use after free errors and no
dangling pointers or references

› Lifetime of object is verified

› No buffer overflows
› Strict rules how memory is managed

› Distinction between safe and
”unsafe” code

› Attention to parts of code that need it

© Wapice
Ltd.

17

› Cargo package manager
› Download and install packages (Crates), resolve dependencies,

compile the project

› Trait based generics
› Object must implement a specific behavior defined by trait

› Similar to interfaces in other languages

› Functional programming features

› Error handling

› Documentation and community

› Rust online book: https://www.rust-lang.org/learn

Other Rust features
Why stopped using Rust?

Why not using Rust?

https://blog.rust-lang.org/2023/08/07/Rust-Survey-2023-Results.html

https://www.rust-lang.org/learn

© Wapice
Ltd.

18

› OPC UA implementation by Adam Lock
› https://github.com/locka99/opcua

› OPC UA Server/client implementation for Rust

› Mozilla Public License 2.0

› Equivalent to the OPC UA Embedded profile, which allows for:
› Communication over opc.tcp:// binary protocol, Encryption and user identities, Subscriptions and

monitored items, Events

› Server profiles
› http://opcfoundation.org/UA-Profile/Server/Behaviour - base server profile

› http://opcfoundation.org/UA-Profile/Server/EmbeddedUA - embedded UA profile

› Tutorials for both client and server

› Cross-compilation: Raspberry PI example

Rust OPC UA: Getting started

https://github.com/locka99/opcua
http://opcfoundation.org/UA-Profile/Server/Behaviour
http://opcfoundation.org/UA-Profile/Server/EmbeddedUA

© Wapice
Ltd.

19

› simple-server (publish some variables to address space and updates)

› simple-client (connects to a server and subscribes to variables)

› discovery-client (Connects to a discovery server and lists the servers registered on it)

› chess-server (Connects to a chess engine as its back-end and updates variables
representing the state of the game)

› demo-server (More complex server. Can be used for compliance testing)

› mqtt-client (Subscribes to some values and publishes them to an MQTT broker)

› web-client (Subscribes to some values and streams them over a websocket)

› modbus-server (OPC UA server that translates variables from MODBUS.)

Rust OPC UA: Getting started

© Wapice
Ltd.

20

› Discovery service set
› GetEndpoints
› FindServers – stub (BadNotSupported)
› RegisterServer – stub (BadNotSupported)

› RegisterServer2 - stub (BadNotSupported)

› Attribute service set
› Read

› Write
› History Read - 0.8+. Callbacks available.
› History Update - 0.8+. Callbacks available.

› Session service set
› CreateSession
› ActivateSession

› CloseSession
› Cancel - stub implementation only

Rust OPC UA: Server
› Node Management service set

› AddNodes

› AddReferences

› DeleteNodes

› DeleteReferences

› Query service set

› QueryFirst - stub (BadNotSupported)

› QueryNext - stub (BadNotSupported)

› View service set
› Browse

› BrowseNext

› TranslateBrowsePathsToNodeIds

› MonitoredItem service set
› CreateMonitoredItems

› Data change filter including dead band
filtering.

› Event filter

› ModifyMonitoredItems
› SetMonitoringMode

› SetTriggering

› DeleteMonitoredItems

› Subscription service set
› CreateSubscription

› ModifySubscription

› DeleteSubscriptions

› TransferSubscriptions - stub implementation

› Publish

› Republish

› SetPublishingMode

› Method service set
› Call

© Wapice
Ltd.

21

› The client API is synchronous
› Request returns when the response is received, or a timeout occurs.

› Under the hood it is asynchronous though.

› The client exposes functions that correspond to the current server
supported profile

› Look at the server services and there will be client-side functions that are analogous to those
services.

› In addition to the server services, the following are also supported.
› FindServers - when connected to a discovery server, to find other servers

› RegisterServer - when connected to a discovery server, to register a server.

Rust OPC UA: Client

© Wapice
Ltd.

22

› Message security modes
› None

› Sign

› SignAndEncrypt

› Security policies
› None

› Basic128Rsa15

› Basic256

› Basic256Rsa256

› Aes128-Sha256-RsaOaep

› Aes256-Sha256-RsaPss

Rust OPC UA: Encryption

› User identities
› Anonymous - i.e. no identity

› UserName - encrypted and plaintext.
User/pass identities are defined by
configuration.

› X509 certificates

› Crypto
› Sign, verify, encrypt and decrypt data.

› Create, load and save certificates and
keys.

© Wapice
Ltd.

23

› JSON serialization of most built-in data types (Tag 0.12.0)

› Update to Rust 2021 profile (Tag 0.12.0)

› Increase asynchronous processing of operations.

› User-level permission model, i.e. ability to limit access to address space based on
identity

› Replace OpenSSL with a native Rust equivalent library (OpenSSL is external to Rust
and implemented in C so it adds complexity)

› Rust crypto / PKI related crates are not yet sufficient to replace OpenSSL

› Tokio codec - use a codec and frame writer to write message chunks (Tokio is
runtime for writing reliable asynchronous applications in Rust programming
language)

Rust OPC UA: Future work

© Wapice
Ltd.

24

Rust OPC UA: Conclusion

Visit wapice.com

