SPONSORS: ‘ ‘ & . \ . .

¢.

FINLAND 2023 o o

30.11.2023 .

RUST Programming Langliage it
" and OPC UAStatug/- N2

\F R FINNISH SOCIETY OF AUTOMATION -

B TR TS UOMEN KUTOMAATID

BECKHOFF b,is,zt,y NO<KIA “OPC 5 | Bl preanco N aoliied Valmet > © Wapice

RA RY\®

Wapice. Unique approach, unique competence.

Digital transformation is a complex challenge. When you choose Wapice, you're
choosing a partner with end-to-end technological competence. While others focus on
one key element of the transformation, we have specialized in the entire digitalization

chain for years.

Tailored to your needs:

Analytics, Al and Big Data
+ Profiling and forecasting

* Anomaly detection & preventive maintenance

+ Natural language, sound, video and image analysis
- Edge computing

Cloud development & management
- Optimization

- Architectures

* Security

* Migrations to cloud

* Hybrid & On-premises

Design services

- Ul/ UX design

+ Conceptualisation

- Business consultation
- Testing and acceptance
+ Web & mobile solutions

Connecting efficiently, reliably and securely
+ Embedded and mobile devices

+ Sensors and automation systems

+ Edge gateways and Clouds

+ Protocol engineering

+ Fieldbus wired/wireless

Custom embedded solutions

+ Electronics Design (Atex) and Manufacturing
as a Service

- Embedded System Software Development
- Functional Safety Expertise

+ Realtime system design

Ready-to-use products:

loT-TICKET®

+ No-code / low-code loT
platform

+ Create IoT apps in minutes

Summium® CPQ
- Digitalise your sales process

+ Visual sales configurator

EcoReaction

- Energy monitoring and

reporting tool

- Customers able to manage

contracts and invoices
through 24 h self service

HUMAN INTERFACE

Web & mobile
solutions
CcLouD

Analytics, Al &
Big Data

UI/UX Design

.I||""|

DevOps ¢+ Cyber Security *« Consulting

DevOps Cyber Security
- DevOps Maturity Assessment

Technology Consulting Solution Consulting

- Specifications and preliminary - Consultation of processes and
investigations operating models

+ Audits and reviews, Technology - Supporting new business models
evaluations with IT solutions

+ Code and Security Review
+ Full stack Security Design
+ Hardware Security Design
+ Hardening Services

- Risk assessments

- Agile & DevOps Training

+ Test Automation

+ Pipsline Enginesgne + Specifications, investigations and
analyses of business premises

Rust - The most admired programming
language!

JavaScript
Python
TypeScript
HTML/CSS
SQL

C#

Bash/Shell (all shells)
Go

Java

CH+

Kotlin

C

PHP
PowerShell

Dart

Swift
Ruby
Lua

https://survey.stackoverflow.co/2023/#section-admired-and-desired-programming-scripting-and-markup-languages

© Wapice
Ltd.

Rust background

> Rust was developed as a fast and memory safe alternative
to languages like C and C++

> Started 2006 as a personal project by Graydon Hoare in
Mozilla research

> We at Wapice think that Rust and OPC UA could be a good
combination in future

> While OPC UA solves security problems at protocol level,
Rust does it at source code level

© Wapice
Ltd.

What is Rust?

> General purpose, systems programming Ianguage
> Cross-platform
> Fast—can be run even on bare metal.
> Control over how memory is used
> .. but still completely memory safe
> Thread safe
> Rich type system
> Debugging at compile time
> Integrated package management

> Good IDEs, Documentation, Community, etc...

© Wapice
Ltd.

Where is Rust used: WS Google senms

H 00 Meta B® Microsoft
> Amazon Web Services 8

> Some high-performance, secure infrastructure networking, and

other systems software (e.g. Firecracker) Gold ‘}flshopify
» Facebook
> Source control backend was rewritten in Rust Silver Password AdaCore (topplowy CJIT) cwromra 33 Dropbox
) [
> Dro pbOX IEa [kndldus piainmater
> File-syncing engine is partially built with Rust code
@Ecosm‘ T s urrewsl 2 Grafbase III ”’ HIGHTEC

Helsing

> Cloudflare, Coursera, Discord, ...
oxidlos] @ mmrEn s:j Asenry - S slint (rag1>

> Rust for Linux

> “Series of patches to the Linux kernel that adds Rust as a second LA
programming language to C for writing kernel components”

i
yﬁivﬁ(::.ﬁ ::<Turbofish>

| watchful OXFUSION ZAMA

‘@ © Wapice
Ltd.

CVEs reported by year

Why Rust is needed? =«

15000

Even though security and safety is
more important than ever, the

10000

number CVEs reported by year is
growi ng 01995 2000 2005 2010 2015 2020 2025

Microsoft estimate: 70% of
vulnerabilities reported to MSRC
caused by a memory issue!

A method to prevent CVEs other

Patch Year

than traditional ways is needed.

© Wapice https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/
Ltd.

https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/

TOP 25 CVEs (memory type errors)

12.

CWE-787 Out of bounds write

> The product writes data past the end, or before the beginning, of the intended buffer

CWE-416 Use after free

> Referencing memory after it has been freed can cause a program to crash, use unexpected values, or
execute code

CWE-125 Out of bounds read

> The product reads data past the end, or before the beginning, of the intended buffer

CWE-476 Null pointer dereference

> ANULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid,
but is NULL, typically causing a crash or exit.

© Wapice https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

Ltd.

Example: Buffer overflow exploitation

finclude <stdio.h>
f#include <string.h>

void vulnerable (void)

I
// A buffer used for some task later on
char buf[16];
// & login status. Somewhere later in our code, we will use this to check if authentication is OK
int isAuthenticated = 0;
// Read input from stdin
printf("\nWrite data to buffer: ");
gets (buf) ;
// Print buffer contents
printf("\nYou wrote: %s\n", buf);
printf("Press Any Key to Continue\n"
getchar () ;
// Print authentication status
if (isAuthenticated == 0)
| {
printf("isAuthenticated: %d\n", isAuthenticated);
printf("So far, we are safe...\n");
}
else
{
printf("isAuthenticated: %d\n", isAuthenticated);
printf("We are breached!!\n");
}
}
int main(void)
It
vulnerable () ;
return O;
}

‘@ © Wapice
Ltd.

C:\Projects\OPCDay>

i .
E & TCPihista ~e Bz AN, E B

How Rust prevents exploiting
coding errors

Ownership and Borrowing, Lifetimes, No null pointer, Bounds
checking

Ownership

> Rust has no garbage collector (that regularly looks for no-
longer-used memory as the program runs)

> Memory is managed through set of rules that are checked at
compile time
> Each value in Rust has an owner.
> There can only be one owner to a piece of data at a time.
> No need to allocate and free the memory: When the owner goes out
of scope, the value will be dropped.
> Prevents from memory leaks.

> Memory is automatically deallocated when it's no longer needed.

© Wapice
Ltd.

Borrowing

> Complex, but fundamental mechanism how Rust prevents

issues when accessing data

> Immutable borrowing: borrower may not change the value

>

>

>

>

> Mutable borrowing: Borrower may change the value

>

> Prevents from data races in multithreaded applications

‘@ © Wapice
Ltd.

Enforces safe concurrent access of data

No dangling references. The compiler guarantees that data will ot go out of scope

during the reference lifetime
Separate code that intends to read only vs code that modifies data

Allows compiler to optimize code

Borrowing rules check that only one mutable borrow exists to particular set of

data

fn print_even(vectr: &Vec<i32>) {
for values in vectr {
if values & 2 == 0 {
println!("{}", values);

}
}

fn main() {
let number_vector = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]1;

// ownership is borrowed, not moved
print_even (&number_vector) ;

println! ("Original vector{:?}", number_vector)

fn remove_value(vectr: &mut Vec<i32>) -> &Vec<i32> {
vectr.remove (4) ;
return vectr

}

fn main() {
let mut nums = vec![1, 2, 3, 4, 5, 6, 7, 8, , 101;
remove_value (&mut nums) ; // mutable reference here
println!("{:2?}", nums);

[

No null pointers

> “I call it my billion-dollar mistake. It was the invention of the null
reference in 1965” — Sir Tony Hoare, developer al ALGOL, 2009

> In Cand C++ null pointer is a pointer that does not point to a valid
area.

> Crashing the program often serves as an entry point to exploit
vulnerabilities

» Trigger exception = Crash - Revealed debugging information -
Understand program logic = Plan subsequent attacks

> Rust enforces safe use of None through Option enum
> Some(T): Represents a value of type T.

> None: Represents the absence of a value.

© Wapice
Ltd.

No buffer overflows

» Bounds checking in arrays and slices

> Slice type
> Reference to a portion of an array or another data structure.

> Allows a safe and efficient access to a sequence of elements without owning
the data

» Standard library uses vectors and strings that automatically

resize when needed

> Ownership and borrowing rules: One thread cannot change
the buffer, when other is accessing it. ;)

Wapice
Ltd.

Summary of Rust safety

mechanisms
> Immutable by default > No use after free errors and no
> Mutable variables require explicit dang“ng pointers or references

declarations
» Lifetime of object is verified

> Type safety

_ > No buffer overflows
> Rustis a strongly typed language that

enforces strict type checking at compile-time » Strict rules how memory is managed

> No null pointers - not allowed ;) > Distinction between safe and

” ”
> No data races unsafe” code

. Safe concurrent use of data > Attention to parts of code that need it

© Wapice
Ltd.

Other Rust features

» Cargo package manager

> Download and install packages (Crates), resolve dependencies,

compile the project

» Trait based generics

> Object must implement a specific behavior defined by trait

> Similar to interfaces in other languages
> Functional programming features
> Error handling
> Documentation and community

> Rust online book: https://www.rust-lang.org/learn

‘@ © Wapice
Ltd.

Why stopped using Rust?

50

& JU &
o
F q S &
& N & -. R &
< ,,e © ¢ o S f*
& & & & & &
> & o & S S
3 3 & & o B
& 5 S & & &
P & o o5
N A & & <&
o <&
o\ A
125
100
75
50
2
)
N & & & & o J &
s & & & & ¢ ¢ & &
& & &) <&) \,@ K
g @" & \ﬁﬁ G‘)\ ' & 3
& @ ¢ & &
CAt R
¢ & & o
& &° T & &
B & « €
< &
& ~ & ¢ <

https://blog.rust-lang.org/2023/08/07/Rust-Survey-2023-Results.html

https://www.rust-lang.org/learn

Rust OPC UA: Getting started

> OPC UA implementation by Adam Lock
) https://github.com/locka99/opcua

> OPC UA Server/client implementation for Rust
> Mozilla Public License 2.0

> Equivalent to the OPC UA Embedded profile, which allows for:

> Communication over opc.tcp:// binary protocol, Encryption and user identities, Subscriptions and
monitored items, Events
> Server profiles
hute://opcfoundation.ore/UA-Profile/Server/Behaviour - base server profile

htto:/; ion.org/UA-Profile/Server, JA - UA profile

> Tutorials for both client and server

> Cross-compilation: Raspberry Pl example

Wapice
Ltd.

https://github.com/locka99/opcua
http://opcfoundation.org/UA-Profile/Server/Behaviour
http://opcfoundation.org/UA-Profile/Server/EmbeddedUA

Rust OPC UA: Getting started

> simple-server (publish some variables to address space and updates)

> simple-client (connects to a server and subscribes to variables)

> discovery-client (Connects to a discovery server and lists the servers registered on it)

> chess-server (Connects to a chess engine as its back-end and updates variables
representing the state of the game)

> demo-server (More complex server. Can be used for compliance testing)
> mqtt-client (Subscribes to some values and publishes them to an MQTT broker)
> web-client (Subscribes to some values and streams them over a websocket)

> modbus-server (OPC UA server that translates variables from MODBUS.)

© Wapice
Ltd.

Rust OPC UA: Server

Node Management service set

> Discovery service set
> GetEndpoints
> FindServers — stub (BadNotSupported)
> RegisterServer — stub (BadNotSupported)
> RegisterServer2 - stub (BadNotSupported)

> Attribute service set
y Read
> Write
> History Read - 0.8+. Callbacks available.
> History Update - 0.8+. Callbacks available.

> Session service set
> CreateSession
> ActivateSession
y CloseSession

> Cancel - stub implementation only

‘@ © Wapice
Ltd.

)

)

>

>

>

>

AddNodes
AddReferences
DeleteNodes

DeleteReferences

Query service set

>

>

QueryFirst - stub (BadNotSupported)
QueryNext - stub (BadNotSupported)

View service set

>

>

>

Browse
BrowseNext

TranslateBrowsePathsToNodelds

)

Monitoredltem service set

> CreateMonitoreditems

> Data change filter including dead band
filtering.

> Event filter
> ModifyMonitoredltems
> SetMonitoringMode
> SetTriggering

y DeleteMonitoreditems

Subscription service set

> CreateSubscription

> ModifySubscription

> DeleteSubscriptions

> TransferSubscriptions - stub implementation
> Publish

> Republish

) SetPublishingMode

Method service set
) Call

Rust OPC UA: Client

> The client APl is synchronous
> Request returns when the response is received, or a timeout occurs.

> Under the hood it is asynchronous though.

> The client exposes functions that correspond to the current server
supported profile
> Look at the server services and there will be client-side functions that are analogous to those
services.
> In addition to the server services, the following are also supported.

> FindServers - when connected to a discovery server, to find other servers

> RegisterServer - when connected to a discovery server, to register a server.

© Wapice
Ltd.

Rust OPC UA: Encryption

© Wapice
Ltd.

> Message security modes

)

)

)

None
Sign
SignAndEncrypt

> Security policies

)

)

)

None

Basic128Rsal5

Basic256
Basic256Rsa256
Aes128-Sha256-RsaOaep
Aes256-Sha256-RsaPss

» User identities
> Anonymous - i.e. no identity

> UserName - encrypted and plaintext.
User/pass identities are defined by
configuration.

> X509 certificates

> Crypto
> Sign, verify, encrypt and decrypt data.

> Create, load and save certificates and
keys.

Rust OPC UA: Future work |

> JSON serialization of most built-in data types (Tag 0.12.0)
> Update to Rust 2021 profile (Tag 0.12.0)

"R\
N\ —
G

x!x
Vesxy

Increase asynchronous processing of operations.

User-level permission model, i.e. ability to limit access to address space based on

o —— 59

identity
2.
Replace OpenSSL with a native Rust equivalent library (OpenSSL is external to Rust TR
and implemented in C so it adds complexity) / \
/ S
Rust crypto / PKl related crates are not yet sufficient to replace OpenSSL e - 2

Tokio codec - use a codec and frame writer to write message chunks (Tokio is

runtime for writing reliable asynchronous applications in Rust programming
language)

© Wapice
Ltd.

Rust OPC UA: Conclusion

Application Layer

« User Authorization
« User Authentication

Communication Layer Communication Layer

« Confidentiality c « Confidentiality

« Integrity « Integrity
« App Authentication « App Authentication

© Wapice
Ltd.

- CREATING A SMARTER
& Wapice v

Visit wapice.com

