
1

Agile Development of Safety-Critical 

Software for Machinery:   
A View on the Change Management in IEC-61508-3 ed2.0

Jani Paalijärvi (currently with Nomovok) 

Tampere University of Technology

Mika Katara

Tampere University of Technology

With help from:

Mika Karaila

Metso Automation Inc

Teemu Parkkinen 

Sandvik Mining and Construction Oy

This presentation, based on the first author’s MSc Thesis, reports results of the OHJELMATURVA project.  

Partial  funding from Tekes and the companies participating in the project is gratefully acknowledged. 



Safety Critical Software in Machinery

There is a trend towards using software to implement features that 

have been traditionally implemented in hardware

New complex features are implemented using software

Benefits of software compared to hardware include:

More advanced functionality without a need to increase the size 

and the capacity of the hardware

Especially in large product quantities software can provide cost 

savings

Flexible changes are supported without having to change 

physical parts

Large amount of information about the system and its 

performance can be gathered for monitoring etc. purposes  

2



Machinery is often safety critical 

Software safety is part of the overall safety of the machine

Software can increase system safety, but can also cause accidents 

in the case of errors

The role and interactions of software should be understood when 

applied in safety critical systems

In contrast to hardware and mechanics, there are no tolerances or 

safety margins

The concept of reliability is fundamentally different for software and 

hardware: since the former does not wear, our confidence 

towards a software component increases while in use for a long 

time without failures (“proven in use”)

Software safety is assured by examining the development process 

in additional to verification & validation  

3



IEC 61508-3 ed2.0

While  the  lifecycle  model of  IEC  61508-3 ed2.0 is  based  on  

the  traditional  V-model  type  of  development, organizations 

developing software for machinery are moving towards more 

agile and lean software development processes and practices

In practice, there is a need to tailor the development process to be 

more flexibility, but still  satisfy  the  requirements  of  the  

standards

Obviously,  such  tailoring  must  be  justified  on  the  basis  of 

functional safety

This is challenging because there are obvious ideological 

differences between the standard and agile and lean practices 

For instance, the former requires heavy documentation, while  the 

agile principles promote undocumented face-to-face 

communication 

4



5



Software Development Methods

Plan driven process models are usually based on waterfall and V-

model type of processes

While using the V-model can provide effective means for validation 

& verification, it has some well known drawbacks:

If software is integrated and integration tested late in the 

development cycle, problems will appear and they will cause 

delays in delivery schedules

If the customer sees the software in action only in acceptance 

testing phase, changes to meet the actual needs are no longer 

possible

Often in practice, the requirements for the software are frozen 

during the project, not in its beginning

6



7

Functional 

specification

Architecture design

Module design Unit testing

Integration testing

System testing

Requirements

specification

Acceptance testing

Test design

Result verification/

validation

Implementation



When Winston W. Royce introduced the waterfall model, he 

already suggested using iterative and incremental features

Later, there have been many variations of iterative and incremental 

process models

Agile methods are those which more or less conform to the ideas 

introduced in the agile manifesto:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

8



Pros and Cons of Plan-Driven Methods

Pros: easy to grasp, clarity, lots of experiences and tool support

Pre-study phase enables giving price and schedule estimates

V-model requires well planned and continuous testing

Cons: does not support heavy changes, assumes “perfect” 

requirements

Estimates on price and schedule often prove to be wrong

Tries to solve the problems in too big chunks

Bears big risk on producing something that does not correspond 

to the needs of the customer or end-user 

9



Pros and Cons of Agile Methods

Pros: flexibility, “embracing changes”, do not rely on “perfect” 

requirements, close collaboration with the customer

Cons:  “Working software over comprehensive documentation” is 

usually interpreted as “working software is enough, no need to 

document anything” since developers don’t like to write 

documentation and documents are burdensome to keep up-to-

date

The role of software architecture maybe easily overlooked, 

unless the method used places special emphasis on that

Too much hype, too little experiences on what works and in 

which contexts

Requires skillful staff and a customer who is available on a daily 

basis

Embracing changes may lead to short-sighted solutions 

10



Development of Safety Critical Software

Many of the errors in safety-critical systems can be traced back to 

requirements

Understanding the interplay between the requirements and safety 

requires good understanding of the application domain

Safety-critical systems are often embedded systems

If the hardware is developed concurrently with the software, it can 

cause changes to the software requirements

Another typical type of problem relates to interfaces, for instance 

between the hardware and software, which can be caused by 

problems in communication and misunderstandings

Communication between the teams is important so that the 

information about the changes is propagated to everyone

11



In the literature, there are many different views on how well agile 

and lean methods suit for creating safety-critical products

Reported experiences in applying agile methods at least in the 

context of DO-178B standard for airborne software

Problems related to light design and documentation, refactoring, 

and the lack of systematic working methods

Also the interplay between software architecture and design is a 

problem in the case of frequent changes

Refactoring the architecture of large and complex systems can be 

hard and it requires above average skills from the developers

12



Refactoring the architecture and code can make the system clearer 

and more understandable 

Extensive regression testing and continuous integration can 

mitigate the risks involved in refactoring 

In safety-critical systems it might be necessary to prohibit the 

refactoring of large chunks at a time

“License to refactor” can also be limited to certain developers 

only

13



Collaboration, incremental and iterative development are pros

It is important to share understanding on the requirements

Discussing a requirement within the team can be very productive 

In practice, some hazards can be overlooked in the beginning of 

the project, thus, they should be reviewed in iterations in the light 

of new knowledge gained in the project

Agile teams are in charge of the development, it is thus vital that 

the team understands its responsibility, and is committed to 

following the rules instead of the “the way of hacking “ 

In some cases, the self organizing nature of the teams may have 

to be limited?

14



Special emphasis is needed to make sure that the work is done is a 

systematic and accurate manner, and that documentation and 

architecture are emphasized as well as the clarity and traceability 

of the implementation 

However, some of the agility may be lost

This can be alleviated by: 

Test automation

Automatic document creation

Requirements management

Using tools to trace requirements

Making reviews more effective

Due to the burden or re-verification and re-validation, it is vital to 

limit the impacts of changes during the whole project

15



Conclusions

Current agile software developments methods are not applicable to 

the development of safety-critical software as such

However, mixing some of the principles of these methods with 

some formal techniques may provide a satisfactory solution

Balancing between these two worlds can be difficult

If the organization is already using V-model type of development, 

agility can be increased with the following, for instance:

Iterative and incremental process

Close collaboration and communication with the customer/end-

user and between the teams

Tools for life-cycle management of requirements and traceability

Test automation

Continuous integration

Implementation and architecture that are clear and modifiable  

16



Documentation can be partly automated using tools, but there is no 

way to escape the burden completely

Maintenance and reviews of documents need special attention

Documentation should probably be limited to just meet the 

requirements of the standards

Agile methods need new skills and ability to work in small teams

It is probably wise to start with the V-model type of process, trying 

to include some agile and lean principles one by one, rather than 

the other way around

While the standard requires some ordering on tasks based on the 

V-model, the tasks should be assigned to iterations

In practice, not all the required tasks need to be done in all 

iterations

This emphasizes the role of planning the contents of the iterations, 

and can be quite challenging in a strictly time-boxed context

17


