
Fault propagation analysis of oscillations in control loops by combining process 

causality and topology 

Rinat Landman 

Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto University, Finland 

Tel: +358 50 400 6624, Fax: +358 (0) 50 4382296, E-mail: rinat.landman@aalto.fi, http://chem.aalto.fi/en/ 

Jukka Kortela 

Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto University, Finland 

Tel: +358 94 702 4380128, jukka.kortela@aalto.fi, http://chem.aalto.fi/en/ 

 

Sirkka-Liisa Jämsä-Jounela 

Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto University, Finland 

Tel: + 358 50 582 6428, sirkka-liisa.jamsa-jounela@aalto.fi, http://chem.aalto.fi/en/ 

 

                KEY WORDS Causal model, Fault diagnosis, Granger causality, Control loops, Plant topology  

 

ABSTRACT 

Disturbances in large-scale industrial systems can easily propagate through the process units and thereby 

adversely affect the overall process performance. In particular, oscillations in control loops are very common in 

industrial processes and lead to poor control performance, an excessive energy consumption and deteriorate the 

product quality. Identifying the propagation path of oscillations is of great importance due to its ability to 

disclose the root cause and identify the process units of concern which should be monitored closely.  

This paper presents a technique for identifying the propagation path of oscillations in control loops using a 

dedicated search algorithm. The algorithm combines the quantitative results from the data-driven causal analysis 

and the topology-based model in the form of a connectivity matrix in order to yield an enhanced causal model 

which illustrates the propagation path. The algorithm has two functionalities: one is finding feasible propagation 

paths among two elements and second is determining whether each path which had been found is direct or 

indirect. The analysis is demonstrated on an industrial paperboard machine with multiple oscillations in its 

drying section due to valve stiction.  First, the connectivity matrix is extracted from a P&ID. Secondly, the 

causality matrix is obtained using the Granger causality method which is then refined using the search algorithm 

based on the connectivity matrix. Finally, the causal model illustrating the propagation path is given and the 

results are evaluated. 

 

1 INTRODUCTION 

In large-scale chemical processes, disturbances can easily propagate through the process units and thereby 

adversely affect the overall process performance.  In particular, oscillations in control loops are very common 

inindustrial processes and lead to poor control performance, low product quality and excessive energy 

consumption /14/. In large-scale systems with a high degree of connectivity, it is a difficult task to determine the 

most probable propagation path. In recent years, capturing causality between different process variables has 

become a vital tool in the diagnosis of faulty systems due to its ability to identify the propagation path of 

disturbances /12/. 

Causality can be captured from process knowledge and/or process data. Models which are based on the physical 

layout of the process are typically referred to as topology-based models or process connectivity models /3/. 
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Several techniques for extracting plant connectivity information from piping and instrumentation diagrams 

(P\&IDs) have been developed in recent years /10,11,13/. On the other hand, data-driven causal analysis utilizes 

historical process data in the form of time series and measures to what extent the time series corresponding to 

specific variables influence each other. The main difficulty in data-driven causal analysis is in establishing the 

statistical significance of the results, hereby eliminating redundant links from the causal model. Consequently, 

several attempts have been made in recent years to combine data-driven causal analysis with topology-based 

models /11, 12/. However, in cases where the system has a high degree of connectivity among the process units, 

finding feasible propagation paths among the process components might not be sufficient to capture precisely the 

causal topology.  

The present study was designed to identify the propagation path of oscillations in control loops by utilizing a 

dedicated search algorithm which validates each entry in the causality matrix obtained from the data-driven 

analysis using the connectivity matrix extracted from the P&ID. The search algorithm has two main 

functionalities: finding feasible propagation paths between two control elements and determining whether a path 

is direct or indirect. The outcome is a refined causality matrix which contains the structural information of the 

propagation path. The efficiency of the analysis is successfully demonstrated on an industrial board machine 

utilizing the Granger causality (GC) while the connectivity matrix was captured from an AutoCAD P\&ID as an 

XML schema. This paper is organized as follows. Section 2 describes how to generate a topology-based model.  

Section 3 presents the fault propagation analysis including the data-driven analysis and the search algorithm. 

Section 4 describes the process case study and the results of the fault propagation analysis. The paper ends with 

concluding remarks in Section 5. 

 

2 GENERATION OF TOPOLOGY BASED MODELS  

There are two types of topology-based models: causal digraph and connectivity matrix which can be considered 

as a graphical and a numerical representation of the process schematics, respectively.  The digraph reflects 

physical or signal flows between the equipment and instruments based on the physical layout of the components 

it represents. Similarly to the digraph, the connectivity matrix indicates the relationships between process 

components in the form of a binary matrix whose elements are assigned according to the existence of a 

directional connection from the row header component to the column header component /9, 11/ . 

In this study, topology data was extracted from an electronic P\&ID which is drawn by the specialized Autodesk 

AutoCAD P\&ID drafting application that has been developed based on Autodesk AutoCAD. In the developed 

application, the topology data is exported in the format of ISO 15926-compliant XML scheme XMpLant /1/.  

The automated generation of topology information includes the following tasks. First, the schematic information 

on the initial component and the terminal component of every line segment, such as pipes and control signals is 

included in the drawing. Secondly, this information is attained through the database object of the drawing which 

includes all the topology information, namely, the names of the process components, the coordinates of the 

components and the connections among them. Finally, this data is further processed by MATLAB program and 

converted into connectivity information which includes the tags, coordinates, and the connectivity between 

process components /9/.  
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3 FAULT PROPAGATION ANALYSIS 

This section first provides an overview on the Granger causality method and then proceeds by describing the 

search algorithm which is utilized in order to combine the connectivity information with the results of the causal 

analysis. 

 

3.1 Granger causality 

Granger causality has received great attention in many areas due to its ease of implementation and efficiency 

when investigating causal relationships /7, 14/. Moreover, the method has been extended to multivariate (MV) 

time series analysis /4/ which makes it highly beneficial when investigating large-scale systems.  

The basic notion of the GC is that if one time series affects another series, then the knowledge of the former 

series should help to predict the future values of the latter one /5/. To illustrate the concept of the method, 

consider two time series 𝑋1(𝑡) and 𝑋2(𝑡)  and their corresponding autoregressive (AR) model: 

  (1)  𝑋1(𝑡) = ∑ 𝐴11,𝑗𝑋1(𝑡 − 𝑗) + ∑ 𝐴12,𝑗𝑋2(𝑡 − 𝑗)𝑝
𝑗=1

𝑝
𝑗=1  +𝜖1(𝑡) 

  (2)  𝑋2(𝑡) = ∑ 𝐴21,𝑗𝑋1(𝑡 − 𝑗) + ∑ 𝐴22,𝑗𝑋2(𝑡 − 𝑗)𝑝
𝑗=1

𝑝
𝑗=1 +𝜖2(𝑡) 

 

where 𝑝  is the model order and 𝜖1 , 𝜖2  are the residuals for each series. (1) is typically referred to as the 

unrestricted mode /2/  . The GC from 𝑋2 to 𝑋1 is defined as: 

(3)    𝐹𝑥2→𝑥1 = 𝑙𝑛 [
 𝑣𝑎𝑟(𝜖1

′ )

𝑣𝑎𝑟(𝜖1)
] 

 

where 𝜖1′ is obtained from (1) by omitting all A12 coefficients for all j /8/. The model after omitting all A12 

coefficients is typically referred to as the restricted model /2/. For MV processes the MV (conditional) GC /6/ 

can be used.  

 

3.2 Refinement of the causality matrix 

The refinement of the causality matrix is based on the process connectivity information. The aim of this 

operation is to eliminate all the values in the causality matrix which do not represent direct causal interactions. 

The realization of the refinement procedure of nxn causality matrix X is obtained according to the following 

implementation: 

 In matrix X, select the next non-zero (i,j)
th

 element that has not been tested. 

 Check if there is a direct physical path from controller i to controller j using the search algorithm. 

 If there is no direct path from controller i to j, set X(i,j) to zero. 

Note that we define a direct path from controller i to controller j if it does not transverse any other controller 

other than j. The search algorithm first finds if a physical path between two control elements exists. It is 

performed using a generic algorithm which is based on a graph traversal which searches a series of nodes, 

ensuring that each node is only traversed once /11/. Once a physical path between the 'cause' variable and the 

'effect' variable is found, an additional unique algorithm is employed to find if it is direct or not. The algorithm 

checks the type of each element in each physical path that had been found in the previous step. If it finds a 

control element (i.e., valve, controller or sensor) which belongs to a control loop that is neither the 'cause' nor the 

'effect', the corresponding path is considered as indirect. Otherwise, if the component belongs to the 'effect' 

control loop, the path is considered as direct. 
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4 PROCESS CASE STUDY 

In this section, we first provide the process description. Next, spectral analysis is applied to identify the variables 

associated with the fault. Finally, the fault propagation analysis is applied to obtain the causal model depicting 

the propagation path. 

 

4.1 Process description 

The process case study is a large-scale board machine (BM) which produces a three-layer liquid packaging 

boards and board cups. The analysis is focused on the drying section of the BM where the remains of excess 

water in the web are evaporated to achieve the desirable moisture content in the board using steam-filled drying 

cylinders. The condensing steam in the cylinders releases latent heat which is used to evaporate the bound water 

in the web. The condensate from the cylinders is collected by siphons to condensate tanks where steam and 

condensate are separated. Steam is then delivered back to the process and condensate is returned to a power 

plant. A scheme of the drying section and its control loops can be seen in Figure 1. The cylinders in the drying 

section are divided into six steam groups (SG). Each SG and its corresponding condensate tank (CT) form a 

single drying group (DG). Each DG has its own controllers to control the steam pressure, the steam pressure 

difference between steam and condensate headers and the level of the condensate. The present case study entails 

a valve stiction in the pressure controller PC1652 and its effect on the interacting loops of the drying section of 

the board machine. The stiction diagnosis is based on the long-term maintenance records of the plant.  

The power spectra of the series were examined in order to detect measurements with similar dynamic behavior. 

The power spectra of the controlled variables (PVs) are shown in Figure 2 where the measurement of PC1652 is 

colored in red. The loops oscillating at a common frequency are: PC668, PC1653, PC651, PC652, PC653, 

PC670, LC652, PC1652, PC671, LC653, PC672 and PC673. Thus, the disturbance is mainly affecting SG1, SG2 

and SG3. 

 

4.2 The results of the GC analysis 

The GC method was applied by evaluating the influences of the controllers outputs (OPs) on the process 

controlled variables (PVs) and included only the control loops which were found to be oscillating at the same 

frequency based on the spectral analysis. The time domain MV (conditional) GC analysis was applied according 

to /6/. The MAR model estimation was performed using the least squares method and model order was chosen 

based on the AIC criteria (p=10). The statistical significance was determined via the F-statistic test /5/ and the 

results were corrected using the Bonferrori correction for multiple comparisons with a p-value of 0.01 /8/.  The 

initial causality matrix is shown in Figure 3.  

 

4.3 The refined causality matrix and the causal model 

The refined causality matrix is shown in Figure 4a. All the GC values which correspond to non-direct 

interactions based on the process connectivity have been set to zero. The causal model based on the refined 

causality matrix is shown in Figure 4b. The search algorithm was able to eliminate most of the redundant results 

from the GC analysis, however the model was still assumed to have few redundant arcs (denoted by the dashed 
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Figure 1. Flowsheet of the drying section. Red lines indicate steam pipes, blue lines are condensate pipes and 

purple lines indicate mixed flow of steam and condensate. 

 

 

Figure 2. The power spectra of the time series 

 

 

Figure 3. The initial causality matrix 

 

arcs in Figure 5 and the highlighted values in Figure 3) based on process knowledge. Those types of ambiguous 

results are sometimes inevitable and in-depth process knowledge is needed to detect them. Nonetheless, the 

search algorithm was able to eliminate approximately 88% of the spurious results obtained from the GC analysis, 

herewith affirming the efficacy of the refinement procedure. 
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Figure 4. (a) The refined causality matrix (b) the corresponding causal model  

 

5 SUMMARY AND CONCLUDSIONS 

This paper introduced a fault propagation analysis by the virtue of the automatic consolidation of data-driven 

causal analysis with topology-based model using a dedicated search algorithm. This combination results in an 

enhanced causal model due to the ability of the search algorithm to eliminate indirect interactions from the 

causality matrix. 

Yet, several redundant links remained in the causal model in spite of the refinement procedure, thus, process 

expert knowledge was essential in eliminating those. Alternatively, numerous data-driven methods can be 

employed in order to construct the causality matrix prior to the refinement procedure, particularly, in cases 

where the system is with a high degree of connectivity among variables.  

In the future, the proposed fault propagation analysis can be used to study how different types of faults propagate 

in a system and accordingly select the critical variables for monitoring. 
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