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ABSTRACT 

The advent of Internet of Things in Industrial Automation challenges the conventional automation software 

architectures based on PLCs and IEC 61131-3 in terms of control decentralization, design flexibility, and system 

productivity. The IEC 61499 standard was introduced as an extension of IEC 61131 to address these issues by 

establishing a new event-driven control architecture for developing reusable, interoperable, and reconfigurable 

distributed industrial automation systems. 

 

1 INTRODUCTION 

Today’s industrial automation industry is facing challenges from both the market and the advancement of new 

technologies in materials, processes, and ICT. The Internet revolution strongly influences the industrial landscape, 

in particular the future of industrial automation. During the last few years several visionary concepts have appeared 

that are based on the ubiquitous connectivity of devices, sensor networks, and cloud computing, known as Internet 

of Things (IoTs) /1/, Cyber-Physical Systems /2/, and Industrial Internet /3/. The leading academic institutions, 

industries, and governments world-wide have come up with plans and strategies for the long-term development. 

For example, in Germany it resulted in an ambitious program called “Industrie 4.0” /4/ that aims at creating the 4th 

industrial revolution. “Industrie 4.0” and other similar concepts aim at mass customization. This requires 

substantial changes in manufacturing machinery: modular and reconfigurable machines more resembling 

intelligent robots, if not in appearance, then in behaviour. This, in turn, requires decentralized and reconfigurable 

control. The conventional automation systems are using centralized control architecture that works very well in 
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mass production scenarios with centralized control but do not fit the new reality of distributed automation 

configuration for the IoTs. The IEC 61499 reference architecture /5/ has been introduced to complement the 

insufficiencies and extend the functionality of IEC 61131-3 /6/ to distributed systems, which is achieved by using 

a component model with event-driven execution semantics. 

 

2 KEY CONCEPTS OF IEC 61499 STANDARD 

In IEC 61499, the well-known concept of function block (FB) is extended to become a software component that 

can be executed in an arbitrary compliant device. An application is represented as a network of FBs, connected 

via data and control signals. The main “magic” of the IEC 61499 technology is its ability to seamlessly deploy 

such a network of function block to distributed control devices. As long as the PLCs or micro-controllers embedded 

into intelligent actuators and sensors are compliant with IEC 61499, they can receive and execute a part of the 

application. Reallocation of the components between available devices can be done in no time and with zero effort. 

This paves the way to using IoTs technologies widely in industrial automation environments. IEC 61499 promotes 

a top-down system engineering flow and provides a system-level view on the intelligence distributed across 

complex automation systems. This is especially helpful when it comes to verification and validation of a system’s 

behaviours. On the level of a single component, IEC 61499 provides developers with well-known languages from 

IEC 61131-3. In a way, a single component can be seen as a model of a single PLC, small or big. But, it is even 

more beneficial to represent a set of functionalities, related to a particular machine, or a part thereof, as a single 

component. Then, a change in a factory floor layout or a change of functionality can be easier translated to 

modifications of automation programs. 

This concept was convincingly demonstrated in many research projects. For example, a novel shoe manufacturing 

facility /7/ built at the ITEA-CNR research institute in Italy is automated in such a way as shown in Figure 1. This 

facility is able to produce individually tailored shoes with similar costs as massively manufactured ones. The 

facility is composed of highly flexible material handling modules named terns, which can be further combined to 

form molecular lines. Each molecular line is composed of arbitrary number of terns for a particular sequence of 

operations. As indicated in Figure 1 (a), this shoe facility can accommodate multiple product paths. Thanks to IEC 

 
Figure 1. (a) Flexible shoe manufacturing facility and (b) Its IEC61499 implementation /7/. 
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61499, as shown in Figure 1 (b), the control software of a molecular line can closely follow its physical structure. 

This high degree of code modularity enables reusability and re-configurability of the equipment. Another 

interesting feature of IEC 61499 is the extended use of state-machines inside FBs. State-based control fits most 

naturally many types of applications, thus this feature has been very positively received by researchers and 

developers. The AutomationIT group at Aalto University is experimenting with implementation of control based 

on IoTs in several application areas exemplified in the following sections. 

 

3 PILOT DEMONSTRATIONS 

 

3.1 Plug and Play Mechatronics 

In this case study /8/ we chose a simplified version of a pick and place manipulator with remote control, as shown 

in Figure 2 (a). The manipulator is composed of two pneumatic cylinders and a joystick for remote control. Each 

cylinder is equipped with two valves enabling forward and backward motion, and two end position sensors, 

indicating the extended and retracted positions. There could be great variety of valves and sensors that can be 

provided by suppliers, each of which may set specific requirements to the control implementation. We will 

encapsulate these details into the corresponding software components, to demonstrate how the particulars can be 

masked if they are not essential at the top integration level. For the purposes of this study, we will assume that 

each constituent part of the manipulator can have its own control and wireless communication capabilities.  

The FB application implementing this control program is presented in Figure 2 (b). The application can be clearly 

divided into three parts: one joystick model and two cylinder models. Each cylinder is implemented as a program 

with five FBs: one for cylinder, two for sensors, and two for valves. The FB application includes four models of 

intelligent valves, which have embedded controllers. They are represented by the FB type iValve. The advantage 

of this solution is that no central controller is required at all. 

 

  

 
Figure 2. (a) Pick and place manipulator with extreme distributed control architecture and (b) Function 

block model of the manipulator control system. 
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3.2 Process Automation 

Another promising application area for distributed automation is process technologies. The collaboration and 

interoperability gain of the Internet-based control is demonstrated by distributing control logic of water process 

testbed at Aalto. As indicated in Figure 3 (a), the controllers are connected via standard Ethernet in a daisy chain 

topology. Each controller is responsible for some physical devices in the system, with the extreme case being that 

each such device (valve, pump, sensor, etc.) can have its own embedded controller. The functionality of the 

distributed control has been designed in a service-oriented manner, where each physical device is providing a set 

of services, encapsulated in FBs. The service-oriented software architecture follows the SOA stack as described 

in /9/. In this approach, upper layer services trigger lower layer services by sending request signals and collect 

response data from lower layer services. The presentation layer in the SOA approach provides a semantic view of 

system configurations. The core service layer is designed for FBs provided by vendors. Those services are 

platform-dependent and usually implemented in as service interface FBs for IEC 61499. The user defined services 

layer are reusable functions developed in this system configuration which could be utilized in the future. Those 

services provide an abstract layer for core services and a bridge between processes and base functions. The process 

layer composes basic functionalities from user-defined services and core services to form simple sequences. 

Finally, the presentation layer is the “brain” of the control system. Service sequences indicating control flow are 

implemented in a single or a network of FBs to provide semantic information by arranging simple sequences in 

the correct order. For example, an implementation of the process service layer is illustrated in Figure 3 (b). In the 

process layer, services are grouped by functionalities in the process, namely tank control (FB_TankControl), PID 

control (FB_PIDControl), heater control (FB_HeaterControl), pump control (FB_PumpControl) and valve control 

(FB_ValveControl). The tank control service collects alarm signals from sensor measurement services and 

generates tank status, such as “is tank ready for feed in and out water”, “can tank be heated and is tank over 

pressured” and so on. The PID control service reads process value from the flow measurement service and 

recalculates control values for valve and pump control services. The heater, pump, and valve control services check 

that the control value is in the valid range and produce the output command to the actuator control services. 

 
Figure 3. (a) Water process testbed with distributed control and (b) Function block implementation of the 

process service layer in SOA stack /9/. 
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3.3 Building Management Systems 

Decentralised control can be successfully applied as a system-level design architecture for decentralized Building 

Management Systems (BMS) with Demand Side Management (DSM) using the IEC 61499 standard /10/.  This 

architecture facilitates the development of automation software of BMS, which has an embedded capability to 

conduct simulation in the loop.  By employing IEC 61499 in BMS domain, all subsystems can be autonomously 

controlled and coordinated at various levels. More importantly, the control application can be developed 

independently from the deployment configurations. Figure 4 (a) schematically presents the overall structure of an 

IEC 61499 control application for a decentralized BMS. The proposed BMS design follows a bottom-up approach. 

First of all, functions of each subsystem for a room are implemented in a corresponding FB. For example, LightFB 

is used to control the light switch and brightness level of the room; BoilerFB adjusts the room’s heating; and 

VenFB manages the room’s ventilation. The LightFB, BolierFB, VenFB, and other required FBs constitute the 

CATroom FB, which provides control functions and HMIs for all room appliances. The individually configured 

CATroom FB instances can then be coordinated by a CATfloor FB. This CATfloor FB provides a central control 

point for all rooms in the same floor. Commands received by the CATfloor FB will be interpreted and then sent to 

all the corresponding rooms in the floor. Similarly, following the control hierarchy, the CATbuilding FB is used to 

interpret building-level control commands for CATfloor FBs. For example, when a “building shutdown” command 

is received, the CATbuilding FB will dispatch corresponding floor-level commands to all the associated CATfloor 

FBs. Subsequently, these CATfloor FBs will command their CATroom FBs to switch off all room appliances. The 

floor- and building-level control hierarchies are not compulsory for the BMS’s proper functioning. They are used 

to improve manageability of large buildings. For small buildings, such as the nine-room building shown in Figure 

4 (b), the BMS is implemented as a network of nine instances of CATroom FB. 

 

3.4 Automotive Control Systems 

The benefits of distributed logic for managing device-independent control systems can be exemplified by the 

following automotive control system developed for Volvo buses. There were several reasons why this system was 

developed by Microteam for Volvo. One of the biggest challenges in automotive software development is the 

 
Figure 4. (a) Design architecture for decentralized BMS (b) Internal Structure and HMIs of BoilerFB. 
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amount of configurations that need to be maintained. In every such industry, where products are varying a lot, the 

management of control systems and software life cycles are challenging. Quite often the interfaces between 

product development, production, and aftermarket are poorly defined and inefficient. By building control software 

from separate components and functions, control solutions can be easily reused and adapted in new projects with 

different topologies of hardware and networks. To achieve this goal, software component descriptions and 

interfaces must be standardized in a way similar to the philosophy proposed in IEC 61499. Another challenge is 

hardware independency. When an automation product manufacturer chooses a software development platform, he 

often becomes dependent on a specific hardware family. For example, the traditional way of programming 

Electronic Control Units (ECUs) with C code implies target dependency. Higher level abstraction and 

programming languages can help mitigate such hardware dependency. These issues led to the development of a 

system, as indicated in Figure 5, with the following major functions. 

Application development tool: This is the tool to create software components that are required for building the 

complete control software package for a product. Vehicle electrical functions are defined as function specifications 

where functionality is described using IEC 61131-3 languages. Other software components are I/O descriptions, 

architecture descriptions, user interface components, event control chains, and so on. 

PDM/PLM/BOM manager subsystem: From here comes the software bill of material (BOM) based on the order 

breakdown. The PDM controls also the product lifecycle management with component part numbers and 

replacement chains. 

Component data management/Package generator: The software package for the product is generated based on 

components referred by BOM. According to the given rules, the functions are split and distributed to the available 

ECUs in the product. Executable code for ECUs is generated and configuration for all required communication 

between ECUs is compiled. Product parameters are constructed to software package. The timing constraints 

against ECU’s capabilities and communication networks capabilities are analysed. AES encryption and key and 

password handling is managed by CDM. The software package is embedded with onboard web documentation 

with support in the languages requested by the order. 

The output of this automated process is a software package that is delivered to shop floor where it is downloaded 

to the vehicle on the production line and the tests for the delivering the vehicle can start. Each product can have 

its variations in functionality but there is no need for software engineering in production line and yet production 

 
Figure 5. Process flow from order to product. 
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receives a functional entity of software and hardware that fulfils the requirements set to the particular instance of 

the product. Benefits of this system are plenty, for example: 

 Code design work is easily distributed globally due to the principle that the software development process 

is divided in to development of individual functions.  

 Strict rules govern that the generation and compilation of distributed code produces functional entities.  

 Software components are kept separate from the hardware platform. This system connects software to 

hardware through specifications and requirements. As long as those are obeyed, the components can be 

changed and developed freely. For instance, by keeping stable interface and requirement specifications 

of ECUs, when new ECU versions emerge the old ones are not needed as spare parts and migrating to the 

next generation ECUs is easy. Since software is not bound with hardware version, the full control of 

software life cycle is achieved and the software is independent from hardware. Target-independent 

software components provide independence from hardware components and suppliers. 

 Distribution of control code to ECUs is automated and can be repeated at any time. The system also 

knows what code should be in which ECU and enabling the automated programming of ECUs. This 

means that ECUs can be replaced in the field without the needs of programming and any manual software 

installation. 

 The system also automates maintenance, as like other components the software components have 

replacement chains, which enables automatic software update for devices. The system is integrated with 

PDM/PLM/ERP systems. Therefore, the software components are seen as similar objects as any other 

component in the system by the higher level production management.  

 

5 ADOPTION AND BENEFITS 

The adoption of any new technology is not easy, especially in automation with long investment cycles and strong 

legacy solutions. Nevertheless, IEC 61499 is making good progress. There are notable early adopters in building 

automation and process technologies, in which the appeal of distributed automations is especially strong. The 

system integrators who used IEC 61499 have reported benefits in terms of reduced engineering cycles on account 

of reusing a good deal of solutions and the ability to adapt them in new projects with different configurations of 

hardware and networks. The key to successful mastering of new technology is through proper education and 

training. As the experiences showed, the concepts of component-based design of IEC 61499 were very quickly 

learned by the new generation of developers. However, re-educating seasoned PLC developers requires a bit more 

systematic approach. Another crucial factor for the success is the availability of mature hardware platforms and 

software tools. Currently, dozens of PLCs are available on the market with full support of IEC 61499 technology. 

One such software platform is ISaGRAF /11/, which has been ported to countless number of hardware targets. 

Another platform, nxtSTUDIO /12/, is from nxtControl, with available PLCs from Beckhoff, Mitsubishi, 

Advantech, Wago, Bosch, SIEMENS, and many more. The open source 4DIAC platform /13/ is also quite popular 

among smaller vendors of PLCs. 

For example, ISaGRAF is a powerful standard-compliant programming solution for industrial automation. It 

provides a comprehensive set of software technologies for developing a wide range of distributed automation 

systems. ISaGRAF addresses both technical and usability aspects in the design of automation systems to satisfy 

expectations of industrial markets for standards, performance, and functionality. With the compliance with IEC 
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61131 and IEC 61499, ISaGRAF allows products to be certified according to international automation standards. 

ISaGRAF consists of two utilities: Application Workbench and Runtime Target. The Application Workbench 

provides a full-fledged integrated development environment for developing, executing, debugging, online 

monitoring, offline simulating, and generating highly portable control applications. It fully supports all IEC 61131-

3 and IEC 61499 programming languages. The Runtime Target is a portable execution engine that can run on any 

operating systems including Linux, VxWork, OS-9, INtime, RTX, Windows, etc., and any hardware platforms, 

such as Intel, Motorola, ARM, PowerPC, etc. By leveraging the ISaGRAF technologies, control applications only 

need to be developed once for all operating systems and hardware platforms. Recently, special attention has been 

paid to the support of up-coming standards related to SmartGrid, such as IEC 61850 /14/, whose stack has been 

tightly integrated with the runtime target. ISaGRAF also provides interfaces to field devices using standard 

protocols, such as ModbusTCP, CANopen, and EtherCAT. Since I/O drivers are implemented as C functions 

linked to the ISaGRAF firmware, OEMs have the flexibility of developing their own drivers with ISaGRAF’s 

easy-to-use I/O development kit, which includes step-by-step instructions and various samples. ISaGRAF can also 

be customized and extended in a very flexible way. It is possible to extend the development environment with new 

elements (called plugins), which can implement custom editors of programming languages, or support of vendor-

specific features, etc. For example, the German vendor Infoteam Software AG has decided to base on ISaGRAF 

technologies the new version of their established OpenPCS development environment. In Finland and the Nordic 

countries, MicroTeam is the first operator providing automation control solutions using the IEC 61499 standard. 

Combined with the profound expertise in IEC 61499 available at Aalto University, it promises great perspectives 

of fruitful collaboration in research and education to the benefits of Finnish automation industry in the IoTs era. 
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