
How hyper-dimensional space can help automation systems to be smarter?

Evgeny Osipov
Luleå University of Technology, Campus Porsön, SE-97187 Luleå, Sweden

Tel: +46 920 49 15 78, E-mail: Evgeny.Osipov@ltu.se

Denis Kleyko

Luleå University of Technology, Campus Porsön, SE-97187 Luleå, Sweden

E-mail: Denis.Kleyko@ltu.se

Nikolaos Papakonstantinou

VTT Technical Research Centre of Finland, FI-02044 Espoo, Finland

E-mail: Nikolaos.Papakonstantinou@vtt.fi

KEY WORDS: Distributed representation, cognitive computing, fault detection.

ABSTRACT
This article introduces the usage of a biologically inspired information representation, called distributed data

representation in hyper-dimensional representation space and a computing technique called cognitive computing
in the context of industrial automation. The distributed data representation and the mathematical framework of
cognitive computing have previously been used for semantic analysis of natural languages and symbolic
reasoning for enabling online learning and reasoning. Specifically, two illustrative use cases discussed here are
a.) Representation of time series (e.g. for processing of inputs from various sensors) for in-sensor classification
applications and b.) An extension to IEC 61499 based multi-agent automation system for an intelligent,
biologically-inspired fault detection in generic complex systems-of-systems.

1 INTRODUCTION

Distributing the intelligence across networked hardware devices is one of the main current trends in industrial
automation development towards enabling flexible and intelligent industries. Specifically, condition monitoring
and intelligent maintenance of industrial systems is becoming an increasingly important function of automation
systems. By intelligence in modern industrial processes often understood an ability of the automation system to
adapt to the changing environment conditions through self-configuration and reconfiguration as well as its ability
to deduce simple logical relationships given the input and output data. In Section 3 an elaborated definition of
intelligent automation is presented.

Talking about intelligent functions, the main shift of the paradigm observed over the past ten years concerns
the transition from traditional artificial intelligence (AI) methods for data analysis and visualization, which
require substantial manual work and knowledge engineering, to purely online autonomous learning of streaming
data. The core idea with the online learning is to create an online model of temporal patterns in data streamed by
multiple heterogeneous sources (sensors, actuators, controllers, etc.). In this way the model will evolve with the
evolution of the underlying process. Such modeling method would address one of the main challenges of the
current control systems – the outdating of underlying plant models – and in turn enable more efficient fault
management.

This article introduces the usage of a biologically inspired information representation, called distributed data
representation in hyper-dimensional representation space and a computing technique called cognitive computing
in the context of industrial automation. The distributed data representation and the mathematical framework of
cognitive computing have previously been used for semantic analysis of natural languages and symbolic
reasoning for enabling online learning and reasoning. Specifically, two illustrative use cases discussed here are
a.) Representation of time series (e.g. for processing of inputs from various sensors) for in-sensor classification
applications and b.) An extension to IEC 61499 based multi-agent automation system /1/ for an intelligent,
biologically inspired fault detection in generic complex systems-of-systems.

2

The article is organized as follows. The fundamentals of the cognitive computing framework and data
representation in hyper-dimensional space are overviewed in Section 2. Section 3 presents an application of the
mathematical framework for representing time series and illustrative operations. Section 4 presents the design of
the biologically inspired fault detection methodology and its application in the context of the IEC 61499 based
automation system. Section 5 concludes the article.

2 HYPER-DIMENSIONAL DISTRIBUTED REPRESENTATION AND THE

FRAMEWORK OF COGNITIVE COMPUTING
The fundamental difference between distributed and traditional (also called localist) representations of data is

as follows. In traditional computing architectures each bit and its position within a structure of bits are
significant. For example a field in a database has a predefined offset amongst other fields and a symbolic value
has unique representation in ASCII codes. In the distributed representation all entities are represented by binary
random vectors of very high dimension also called Binary Spatter codes /2, 3/ Further in the article for brevity
reasons HD-vector term is used when referring to hyper-dimension vectors. Hyper-dimensionality means here
several thousand of binary positions for representing a single entity. In /3/ it is proposed to use vectors of 10000
binary elements.

2.1 Similarity metric

A similarity between two binary representations is characterized by Hamming distance, which measures the
number of positions in two compared vectors in which they are different:

Δ! 𝐴,𝐵 =
𝐴⨁𝐵 !

𝑑
=

𝑎!⨁𝑏!!
!!!

𝑑

where ai, bi are bits in ith position in vectors A and B of dimension d and ⨁denotes the bit-wise XOR operation.

2.2 Randomness
Randomness means that the values on each position of an HD-vector are independent of each other, and "0"

and "1" components are equally probable p1=p0=0.5. The statistical properties of these HD-vectors are described
by the binomial distribution: 𝑃𝑟 𝑘,𝑑, 𝑝 = 𝑑

𝑘 𝑝! 1 − 𝑝 !!!. On very high dimensions d, the distances from
any arbitrary chosen HD-vector to more than 99.99 % of all other vectors in the representation space are
concentrated around 0.5 Hamming distance.

2.3 Generation of HD-vectors
Random binary vectors with the above properties could be generated based on Zadoff-Chu sequences /4/

Using this principle a sequence of K pseudo-orthogonal vectors to a given initial random HD-vector A is
obtained by cyclically shifting A on i positions, where 1< i ≤ d. Further in the article this operation is denoted as
Sh(A, i).

2.3 Bundling of vectors

Joining several entities into a structure is done by a bundling operation. It is implemented by a (thresholded)
sum of the HD-vectors representing entities. A bit-wise thresholded sum of n vectors results in 0 when n/2 or
more arguments are 0, and 1 otherwise. Further term "majority sum" is used and denoted as [A + B + C]. The
relevant properties of the majority sum are: The result is a random vector, i.e. the number of ’1’ components is
approximately equal to the number of ’0’ components; The result is similar to all vectors included in the sum;
Number of vectors involved into majority sum must be odd; The more HD-vectors are involved into majority
sum operations the closer is Hamming distance between the resultant vector and any HD-vector component to
0.5. If several copies of any vector are included into majority sum the resultant vector is closer to the dominating
vector than to other components. The algebra of hyper-dimensional representation includes also other operations
e.g., binding and permutation. Since in the scope of this article they are not used the description of their
properties is omitted.

3

3 Hyper-dimensional classifier of temporal patterns
This section describes an application of the cognitive computing framework for classification of temporal

patterns in data from low-level sensors. The problem of pattern classification appears in many areas ranging
from semantic analysis of natural languages to intelligent transportation systems. During past years a vast
number of methods based on statistical analysis, the usage of artificial neural networks and others has been
established /5/. Many of these methods require manual training and a heavy processing over large data sets. The
proposed usage of the hyper-dimensional representation for classification of temporal patterns (i.e. continuous
signals) is illustrated in Figure 1.

Consider a generic signal exhibiting a certain pattern in time illustrated in Figure 1a. The task of raw sensory
signal conversion into distributive-represented pattern is formulated as to find and to quantify distinct changes in
signal level and representing them using hyper-dimensional vectors. For example the signal in Figure 1a features
changes at 9 positions. The first and the last positions correspond to the level of the ambient noise experienced
by the sensor in the absence of external stimuli. The task is to extract a set of significant level changes. There are
several standard methods for detecting the magnitude of the signal’s change /5/. Due to space limitation their
description is omitted in this article, however, for the sake of further presentation suppose that as the output such
an algorithm produces a series of values of magnitudes of significant signal’s changes. The values of magnitudes
are then quantized into a finite number of discrete quantization levels as illustrated in Figure 1a. The number of
the quantization levels is application domain specific and can be selected automatically without manual pre-
engineering. For a collection of signals describing similar underlying generating stochastic process the obtained
from the algorithm series of the change-magnitude values form similar patterns. Thus the signal exemplified in
Figure 1b features pattern: 1-2-1-4-1-2-1.

At the next stage each obtained pattern is encoded using distributed hyper-dimensional representation. For
this purpose it is proposed to XOR the encoded levels into a single distributed representation as
1HD⨁2HD⨁1HD⨁4HD⨁1HD⨁2HD⨁1HD	 , where a number with index “HD” is the hyper-dimensional code of the
particular quantization level. However, it is easy to spot that under such encoding XOR’ing HD representations
of the same level would cancel each other. In order to avoid this, it is proposed to derive the code of for the
particular level from its initial vector and its place in the pattern as Sh(Li, pj). In this way the code for level Li on
the position pj is obtained by cyclically shifting the initial vector for Li on pj positions. For further reasoning note
that this representation of the entire pattern obviously results in a binary vector of the same dimension as the
binary vectors for each component. In the case when vectors of dimension 8000 bits are used for encoding
(which is a reasonable dimension exhibiting the properties stated in Section 2) each pattern will be represented
by a scalar of approximately 1kB in size.

The classifier is then constructed in form (1) following similar line of reasoning as in /6/. In (1) Σ is the
operation of MAJORITY summation, Pj is a pattern of a signal represented as described above, Ti is a hyper-
dimensional representation of the vector representing the class to which the signal from the learning set belongs
to, K is the number of classes and N is the size of the training set per class.

𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅 = 𝑃! ⊗ 𝑇!| 𝑖 = 1. .𝐾 .
!!!..!

(1)

a. The magnitude of a generic signal exhibiting certain
pattern in time is quantized into a finite number of
quantization levels after filtering out the noise.

b. A 1 kB scalar is constructed using equation (1)
for time efficient classification.

Figure 1. Application of hyper-dimensional representation for classification of temporal patterns.

4

Note that due to bit-wise operations the size of the representation of the entire classifier is obviously the same
as the dimension of the binary vectors for each pattern, i.e. in the case of encoding using 8000 bits binary
vectors, the size of the classifier remain constant and equals approximately 1 kB.

When the classifier is constructed by (1) it is ready for its main operation. The main operation is formulated
as testing an input (previously unseen) pattern (P) on inclusion within the hyper-dimensional classifier. The
result of the classification is the class to which the input pattern belongs:

𝑇𝑦𝑝𝑒 = 𝑃⊗ 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅. (2)
The result of the above operation is the noisy version of the HD-vector encoding the type, which the pattern

belongs to. The remaining operation is therefore performing a Hamming distance test with the clean versions of
the type-representing HD-vectors:

∆! 𝑇𝑦𝑝𝑒,𝑇! = 𝑇𝑦𝑝𝑒⊗ 𝑇! !;
∆! 𝑇𝑦𝑝𝑒,𝑇! = 𝑇𝑦𝑝𝑒⊗ 𝑇! !;
∆! 𝑇𝑦𝑝𝑒,𝑇! = 𝑇𝑦𝑝𝑒⊗ 𝑇! !.

(3)

The value of the Hamming distance test (3) less than 0.5 indicates the correct type of the input pattern. The

presented in this section classification scheme using hyper-dimensional distributed data representation was tested
a real-life scenario of the classification of the car passages collected from a vibration sensor installed on the road
surface in the university’s testbed of Intelligent Transportation System. The details of the performance
evaluation are reported in /7/. In summary, for the dimensions of the hyper-dimensional vectors discussed (1kB)
the classifier can store up to 100 unique samples while exhibiting 100% classification accuracy. This result is of
a practical interest in the scenarios with low variability in the patterns. In this case the classifier and the
classification operations (self-learning, classification) could be deployed directly on a low-power sensing device.
As part of the evaluation the classifier was implemented on a low-end sensor platform featuring 16-bits
microcontroller. In this implementation one classification operation took approximately 130 milliseconds.

4 BIOLOGICALLY INSPIRED FAULT DETECTION

 In the proposed architecture it is assumed that a
complex system is equipped with a component based
automation system built, for example, using the
IEC61499 standard /8/. In this way the whole system is
viewed as a collection of interacting components (or
functional blocks), each of which could be
characterized by its state encountering at the specific
moment in time. Figure 2 demonstrates a high-level
system model and the proposed solution.
The hyper-dimensional representation is applied to
encode the components states. Referring to Figure 2,
each component is assigned a system-wide unique
initialization hyper-dimensional vector, denoted as 𝐼𝑉.
Without loss of generality suppose that the state of
each system’s component changes over time in discrete
steps. Suppose also that the value range of the
component’s state is finite, bounded. Thus the state of
a component at time t is encoded by cyclically shifting
the initialization vector for this component by the
number of steps corresponding to the index of the
current state’s value i in the value range for this
particular state, i.e. 𝑆𝑇𝐴𝑇𝐸!,!!" = Sh 𝐼𝑉! , 𝑖 .

The aggregated system state is constructed using
the historical data by encoding states of all components
leading to the particular fault into a single distributed
representation: 𝑆𝑌𝑆!"#$%! = 𝑆𝑇𝐴𝑇𝐸!!"!

!!! , where
N in this case is the number of system’s components
and 𝑆𝑇𝐴𝑇𝐸!!" is the state of component j encoded
using hyper-dimensional distributed representation.
The state of each component is encoded by cyclically

Automation node 2

Automation node 1 Automation node n

Plant

Distributed
Automation Layer

Cognite reasoning

Bio-inspired representation

Reasoning Agents

Figure 2. A distributed automation system enhanced with
the autonomous intelligence capabilities based on the
usage of multi-agent technology and distributed hyper-
dimensional binary representation.

5

shifting the initialization vector for this component. In the case of several historical cases leading to the
particular fault i, the corresponding aggregated system states for this fault are bundled together as: 𝑆𝑌𝑆!"#$%! =
 𝑆𝑌𝑆!"#$%!

! + 𝑆𝑌𝑆!"#$%!
! +⋯+ 𝑆𝑌𝑆!"#$%!

! , where M is the number of encountered cases leading to fault i.
Fault identification in the proposed architecture

The fault identification procedure has its foundation in the statistical properties of the hyper-dimensional
random binary vectors used for encoding states of system’s components and the similarity property of the
majority sum is used for bundling of several vectors together. The joint system state 𝑆𝑌𝑆!"#$%! is an associative
memory of all combinations of system-wide states, which characterize the particular fault. The fault
identification is, therefore, performed by testing the inclusion of the current pattern of system states with
holographic representations for different faults 𝑆𝑌𝑆!"#$%!. This is done by computing the Hamming distance
Δ! 𝑆𝑌𝑆!"##$%& , 𝑆𝑌𝑆!"#$%! , between the current system state 𝑆𝑌𝑆!"##$%& and the state of all possible faults
𝑆𝑌𝑆!"#$%!. The closer this metric to 0.5 for the particular fault the less likely is that the current state is an
indication of this fault.

Performance benchmarking with related approaches
The case study used for demonstrating the proposed cognitive fault detection system is a generic nuclear

power plant model provided by Fortum Power and Heat, a power utility with nuclear power plant operation
license in Finland. The Apros 6 process simulator is used to run the model. Apros 6 is a dynamic process
simulator owned by the VTT Technical Research Centre of Finland and Fortum. Two main process loops are
used for power generation using nuclear energy, the primary and secondary circuit. The primary circuit contains
the reactor vessel and the nuclear fission within the fuel generates thermal energy, which heats the water in the
vessel. The coolant pumps in the primary circuit circulate water through the steam generators and the reactor
vessel and thus thermal energy is transferred from the primary to the secondary circuit. The pressurizer, also part
of the primary circuit, is a vessel is partially filled with water and it is designed for pressure regulation using
heaters and water sprays. The secondary circuit is connected to the primary through the steam generators. Heat
from the primary circuit converts water flowing in the secondary side of the steam generators into steam.
Turbines use the high-pressure steam flow and drive electric generators. Condensers are used to convert the low-
pressure steam after the turbines back to water.

Data sources

The functional failure identification and propagation framework was used to analyze 116 automation
components as the sources of hardware fault /9/. Most of these components were pump and valve actuators. For
each automation component type three specific failure modes were chosen (e.g. a valve actuator can be set to the
“failed open”, “failed closed” or “no electric supply” fault mode which will result in the opening, closing or stop
controlling the valve). A component – failure mode pair defines a fault in this paper (e.g., “Valve valveID” –
“Fails - Open”). From the 348 total possible faults (116 components x 3 failure modes per component), 92 faults
actually affected the steady state operation of the power plant model and thus can be detected by a data driven
fault detection system.

In the case study the model was driven to 11 power production levels in order to get more simulation data for
the set of faults. The 92 faults, which are detectable in the steady state of the plant, are simulated for every one of
the 11 power levels (for a total number 1012 simulations). The results of these simulations were used to build
data sets for training and testing the fault detection systems. Each simulation (fault - power level) contains 180
seconds of simulation time. Data set entries are generated by 37 monitored simulation signals. Three statistical
values are generated per signal leading to a 111 inputs per entry (37signals x 3statistical values per signal). The
data sets had a total of 1012 entries (same as the number of simulations), each with 111 inputs (generated by the
37 logged signals) and at the end every entry contains the classification attribute.

Reference technologies and selected results of benchmarking

The performance of the proposed approach was compared to the performance of a multilayer perceptron
Artificial Neural Network (ANN), a decision tree, and a K-nearest-neighbors (KNN) classifier. The WEKA tool
and MATLAB were used to benchmark the accuracy of the fault detection of the proposed architecture. Note
that the decision tree and ANN produce a single prediction for a given input. The KNN classifier and the
proposed approach produce a ranked list of possible results. During the benchmarking process an accuracy of the
fault identification was assessed. The accuracy was measured as the ratio of the correctly identified faults over
all presented cases from the test set.

6

To the best of the authors’ knowledge
benchmarking machine learning techniques
operate only in the centralized mode. That is
the data set presented for the fault detection
should have the same structure as the training
data set. In this article a zero knowledge about
the underlying component interdependencies is
assumed. Therefore all the compared
approaches were trained by presenting the state
values from all system components.

The results of comparison of the
considered approaches are shown in Figure 3.
The main result indicated by the figure is that

the accuracy of the fault identification by the proposed approach outperforms the other approaches even when
considering the top first result. Namely the best ANN’s accuracy index was nearly 0.6; the accuracy of the
decision tree was 0.65. The best accuracy was demonstrated by both KNN classifier and the proposed approach
(0.68 and 0.71 correspondingly). When considering top three results both KNN and our architecture show the
accuracy above 0.9 with the accuracy of the proposed approach toping at 0.95. The presented above result is a
very positive for the architecture. Showing either matching or in most of the cases superior performance over the
traditional approaches our approach has one more unique advantage: it is suitable for the distributed
implementation.

5 SUMMARY

This article introduced selected applications of a mathematical framework for cognitive computing in the
context of industrial automation systems. The cases for classification of temporal patterns and fault detection in
complex systems were considered. The main message delivered by the article is that the usage of distributed data
representation and specifically its binary variant (binary hyper-dimensional codes) enables rather complex
analysis directly on or close-to the resource-constrained nodes (controllers and sensors). Streamlining and
automating the root cause analysis is on the research agenda since many years now. In /10/ the authors overview
the progress of the event correlation techniques and provide a set of recommendations for future development of
event correlation techniques in the context of system management. These recommendations include: a.) The next
generation event-correlation systems must be able to deal with uncertain knowledge; b.) Better learning
techniques to improve the accuracy of case-based systems; c.) Faster algorithms based on binary vector mapping
which would convert a problem of correlating spatiotemporal events from complex cross-matching of “IF-
THEN” rules into binary vector mapping operations. The authors of this article conjectures that applications of
the biologically inspired computing framework presented in herewith has an excellent potential for addressing
these challenges.

6 REFERENCES
1. Mousavi, V. Vyatkin: 2eA-FB: a semantic agent approach to IEC 61499 function blocks in energy efficient building

automation systems, Automation in Construction, Elsevier, 2014, in print.
2. Gallant S. I. and Okaywe T. W.: Representing objects, relations, and sequences, Neural Comput., vol. 25, pp. 2038-

2078, 2013.
3. Kanerva P.: Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-

Dimensional Random Vectors, Cognitive Computation, vol. 1, pp. 139-159, Jun 2009.
4. Kleyko D. and Osipov E.: On Bidirectional Transitions between Localist and Distributed Representations: The Case of

Common Substrings Search Using Vector Symbolic Architecture, Procedia Computer Science, vol. 41, pp. 104-113,
2014.

5. Stork D, Duda R., Hart P.: Pattern Classification, John Wiley and sons, LTD, 2nd edition, 2000.
6. Levy S, Bajracharya S., and Gayler R.: Learning behavior hierarchies via high-dimensional sensor projection, In

Learning Rich Representations from Low-Level Sensors: Papers from the 2013 AAAI Workshop.
7. Kleyko D. and Osipov E.: Brain-like classifier of temporal patterns, in Computer and Information Sciences (ICCOINS),

2014 International Conference on, 2014, pp. 1-6.
8. Vyatkin V.: IEC 61499 as Enabler of Distributed and Intelligent Automation: State of the Art Review, Industrial

Informatics, IEEE Transactions on, vol. 7, pp. 768-781, 2011.
9. Papakonstantinou N., Proper S., O’Halloran B., and Tumer I. Y.: Simulation Based Machine Learning For Fault

Detection In Complex Systems Using The Functional Failure Identification And Propagation Framework, In
proceedings of ASME CIE, Buffalo NY, USA, 2014.

10. Martin-Flatin J-P, Jakobson G., and Lewis L.: Event Correlation in Integrated Management: Lessons Learned and
Outlook. J. Netw. Syst. Manage. 15, 4 (2007).

Figure 3. The results of benchmarking: ANN, decision tree, KNN
and the proposed approach.

