
How hyper-dimensional space can help automation systems to be smarter? 
 

Evgeny Osipov 
Luleå University of Technology, Campus Porsön, SE-97187 Luleå, Sweden 

Tel: +46 920 49 15 78, E-mail: Evgeny.Osipov@ltu.se 

 

Denis Kleyko 

Luleå University of Technology, Campus Porsön, SE-97187 Luleå, Sweden 

E-mail: Denis.Kleyko@ltu.se 

 

Nikolaos Papakonstantinou  

VTT Technical Research Centre of Finland, FI-02044 Espoo, Finland 

E-mail: Nikolaos.Papakonstantinou@vtt.fi 

 

KEY WORDS: Distributed representation, cognitive  computing, fault detection.   

 

ABSTRACT 
This article introduces the usage of a biologically inspired information representation, called distributed data 

representation in hyper-dimensional representation space and a computing technique called cognitive computing 
in the context of industrial automation. The distributed data representation and the mathematical framework of 
cognitive computing have previously been used for semantic analysis of natural languages and symbolic 
reasoning for enabling online learning and reasoning. Specifically, two illustrative use cases discussed here are 
a.) Representation of time series (e.g. for processing of inputs from various sensors) for in-sensor classification 
applications and b.) An extension to IEC 61499 based multi-agent automation system for an intelligent, 
biologically-inspired fault detection in generic complex systems-of-systems. 
 
1 INTRODUCTION 

Distributing the intelligence across networked hardware devices is one of the main current trends in industrial 
automation development towards enabling flexible and intelligent industries. Specifically, condition monitoring 
and intelligent maintenance of industrial systems is becoming an increasingly important function of automation 
systems. By intelligence in modern industrial processes often understood an ability of the automation system to 
adapt to the changing environment conditions through self-configuration and reconfiguration as well as its ability 
to deduce simple logical relationships given the input and output data. In Section 3 an elaborated definition of 
intelligent automation is presented. 

Talking about intelligent functions, the main shift of the paradigm observed over the past ten years concerns 
the transition from traditional artificial intelligence (AI) methods for data analysis and visualization, which 
require substantial manual work and knowledge engineering, to purely online autonomous learning of streaming 
data. The core idea with the online learning is to create an online model of temporal patterns in data streamed by 
multiple heterogeneous sources (sensors, actuators, controllers, etc.). In this way the model will evolve with the 
evolution of the underlying process. Such modeling method would address one of the main challenges of the 
current control systems – the outdating of underlying plant models – and in turn enable more efficient fault 
management. 

This article introduces the usage of a biologically inspired information representation, called distributed data 
representation in hyper-dimensional representation space and a computing technique called cognitive computing 
in the context of industrial automation. The distributed data representation and the mathematical framework of 
cognitive computing have previously been used for semantic analysis of natural languages and symbolic 
reasoning for enabling online learning and reasoning. Specifically, two illustrative use cases discussed here are 
a.) Representation of time series (e.g. for processing of inputs from various sensors) for in-sensor classification 
applications and b.) An extension to IEC 61499 based multi-agent automation system /1/ for an intelligent, 
biologically inspired fault detection in generic complex systems-of-systems.   
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The article is organized as follows. The fundamentals of the cognitive computing framework and data 
representation in hyper-dimensional space are overviewed in Section 2. Section 3 presents an application of the 
mathematical framework for representing time series and illustrative operations. Section 4 presents the design of 
the biologically inspired fault detection methodology and its application in the context of the IEC 61499 based 
automation system. Section 5 concludes the article. 
 

2 HYPER-DIMENSIONAL DISTRIBUTED REPRESENTATION AND THE 

FRAMEWORK OF COGNITIVE COMPUTING 
The fundamental difference between distributed and traditional (also called localist) representations of data is 

as follows. In traditional computing architectures each bit and its position within a structure of bits are 
significant. For example a field in a database has a predefined offset amongst other fields and a symbolic value 
has unique representation in ASCII codes. In the distributed representation all entities are represented by binary 
random vectors of very high dimension also called Binary Spatter codes /2, 3/ Further in the article for brevity 
reasons HD-vector term is used when referring to hyper-dimension vectors. Hyper-dimensionality means here 
several thousand of binary positions for representing a single entity. In /3/ it is proposed to use vectors of 10000 
binary elements. 
 
2.1 Similarity metric  

A similarity between two binary representations is characterized by Hamming distance, which measures the 
number of positions in two compared vectors in which they are different: 

Δ! 𝐴,𝐵 =
𝐴⨁𝐵 !

𝑑
=

𝑎!⨁𝑏!!
!!!

𝑑
 

where ai, bi are bits in ith position in vectors A and B of dimension d and ⨁denotes the bit-wise XOR operation. 
 

2.2 Randomness  
Randomness means that the values on each position of an HD-vector are independent of each other, and "0" 

and "1" components are equally probable p1=p0=0.5. The statistical properties of these HD-vectors are described 
by the binomial distribution: 𝑃𝑟 𝑘,𝑑, 𝑝 = 𝑑

𝑘 𝑝! 1 − 𝑝 !!!. On very high dimensions d, the distances from 
any arbitrary chosen HD-vector to more than 99.99 % of all other vectors in the representation space are 
concentrated around 0.5 Hamming distance.  
 

2.3 Generation of HD-vectors  
Random binary vectors with the above properties could be generated based on Zadoff-Chu sequences /4/ 

Using this principle a sequence of K pseudo-orthogonal vectors to a given initial random HD-vector A is 
obtained by cyclically shifting A on i positions, where 1< i ≤ d. Further in the article this operation is denoted as 
Sh(A, i). 
 
2.3 Bundling of vectors  

Joining several entities into a structure is done by a bundling operation. It is implemented by a (thresholded) 
sum of the HD-vectors representing entities. A bit-wise thresholded sum of n vectors results in 0 when n/2 or 
more arguments are 0, and 1 otherwise. Further term "majority sum" is used and denoted as [A + B + C]. The 
relevant properties of the majority sum are: The result is a random vector, i.e. the number of ’1’ components is 
approximately equal to the number of ’0’ components; The result is similar to all vectors included in the sum; 
Number of vectors involved into majority sum must be odd; The more HD-vectors are involved into majority 
sum operations the closer is Hamming distance between the resultant vector and any HD-vector component to 
0.5. If several copies of any vector are included into majority sum the resultant vector is closer to the dominating 
vector than to other components. The algebra of hyper-dimensional representation includes also other operations 
e.g., binding and permutation. Since in the scope of this article they are not used the description of their 
properties is omitted. 
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3 Hyper-dimensional classifier of temporal patterns  
This section describes an application of the cognitive computing framework for classification of temporal 

patterns in data from low-level sensors.  The problem of pattern classification appears in many areas ranging 
from semantic analysis of natural languages to intelligent transportation systems. During past years a vast 
number of methods based on statistical analysis, the usage of artificial neural networks and others has been 
established /5/. Many of these methods require manual training and a heavy processing over large data sets. The 
proposed usage of the hyper-dimensional representation for classification of temporal patterns (i.e. continuous 
signals) is illustrated in Figure 1.   

Consider a generic signal exhibiting a certain pattern in time illustrated in Figure 1a. The task of raw sensory 
signal conversion into distributive-represented pattern is formulated as to find and to quantify distinct changes in 
signal level and representing them using hyper-dimensional vectors. For example the signal in Figure 1a features 
changes at 9 positions. The first and the last positions correspond to the level of the ambient noise experienced 
by the sensor in the absence of external stimuli. The task is to extract a set of significant level changes. There are 
several standard methods for detecting the magnitude of the signal’s change /5/. Due to space limitation their 
description is omitted in this article, however, for the sake of further presentation suppose that as the output such 
an algorithm produces a series of values of magnitudes of significant signal’s changes. The values of magnitudes 
are then quantized into a finite number of discrete quantization levels as illustrated in Figure 1a. The number of 
the quantization levels is application domain specific and can be selected automatically without manual pre-
engineering. For a collection of signals describing similar underlying generating stochastic process the obtained 
from the algorithm series of the change-magnitude values form similar patterns. Thus the signal exemplified in 
Figure 1b features pattern: 1-2-1-4-1-2-1.  

At the next stage each obtained pattern is encoded using distributed hyper-dimensional representation. For 
this purpose it is proposed to XOR the encoded levels into a single distributed representation as 
1HD⨁2HD⨁1HD⨁4HD⨁1HD⨁2HD⨁1HD	  , where  a number with index “HD” is the hyper-dimensional code of the 
particular quantization level. However, it is easy to spot that under such encoding XOR’ing HD representations 
of the same level would cancel each other. In order to avoid this, it is proposed to derive the code of for the 
particular level from its initial vector and its place in the pattern as Sh(Li, pj). In this way the code for level Li on 
the position pj is obtained by cyclically shifting the initial vector for Li on pj positions. For further reasoning note 
that this representation of the entire pattern obviously results in a binary vector of the same dimension as the 
binary vectors for each component. In the case when vectors of dimension 8000 bits are used for encoding 
(which is a reasonable dimension exhibiting the properties stated in Section 2) each pattern will be represented 
by a scalar of approximately 1kB in size.  

The classifier is then constructed in form (1) following similar line of reasoning as in /6/. In (1) Σ  is the 
operation of MAJORITY summation, Pj  is a pattern of a signal represented as described above, Ti  is a hyper-
dimensional representation of the  vector representing the class to which the signal from the learning set belongs 
to, K is the number of classes and N is the size of the training set per class.  

𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅 = 𝑃! ⊗ 𝑇!| 𝑖 = 1. .𝐾 .
!!!..!

 
(1) 

  
a. The magnitude of a generic signal exhibiting certain 
pattern in time is quantized into a finite number of 
quantization levels after filtering out the noise. 

b. A 1 kB scalar is constructed using equation (1) 
for time efficient classification. 

 
Figure 1. Application of hyper-dimensional representation for classification of temporal patterns. 
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Note that due to bit-wise operations the size of the representation of the entire classifier is obviously the same 
as the dimension of the binary vectors for each pattern, i.e. in the case of encoding using 8000 bits binary 
vectors, the size of the classifier remain constant and equals approximately 1 kB. 

When the classifier is constructed by (1) it is ready for its main operation. The main operation is formulated 
as testing an input (previously unseen) pattern (P) on inclusion within the hyper-dimensional classifier. The 
result of the classification is the class to which the input pattern belongs:  

𝑇𝑦𝑝𝑒 = 𝑃⊗ 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅. (2) 
The result of the above operation is the noisy version of the HD-vector encoding the type, which the pattern 

belongs to. The remaining operation is therefore performing a Hamming distance test with the clean versions of 
the type-representing HD-vectors: 
 

∆! 𝑇𝑦𝑝𝑒,𝑇! = 𝑇𝑦𝑝𝑒⊗ 𝑇! !;
∆! 𝑇𝑦𝑝𝑒,𝑇! = 𝑇𝑦𝑝𝑒⊗ 𝑇! !;
∆! 𝑇𝑦𝑝𝑒,𝑇! = 𝑇𝑦𝑝𝑒⊗ 𝑇! !.

 
(3) 

 
The value of the Hamming distance test (3) less than 0.5 indicates the correct type of the input pattern.  The 

presented in this section classification scheme using hyper-dimensional distributed data representation was tested 
a real-life scenario of the classification of the car passages collected from a vibration sensor installed on the road 
surface in the university’s testbed of Intelligent Transportation System. The details of the performance 
evaluation are reported in /7/. In summary, for the dimensions of the hyper-dimensional vectors discussed (1kB) 
the classifier can store up to 100 unique samples while exhibiting 100% classification accuracy. This result is of 
a practical interest in the scenarios with low variability in the patterns. In this case the classifier and the 
classification operations (self-learning, classification) could be deployed directly on a low-power sensing device. 
As part of the evaluation the classifier was implemented on a low-end sensor platform featuring 16-bits 
microcontroller. In this implementation one classification operation took approximately 130 milliseconds.  
 
4 BIOLOGICALLY INSPIRED FAULT DETECTION  

 In the proposed architecture it is assumed that a 
complex system is equipped with a component based 
automation system built, for example, using the 
IEC61499 standard /8/. In this way the whole system is 
viewed as a collection of interacting components (or 
functional blocks), each of which could be 
characterized by its state encountering at the specific 
moment in time. Figure 2 demonstrates a high-level 
system model and the proposed solution. 
The hyper-dimensional representation is applied to 
encode the components states. Referring to Figure 2, 
each component is assigned a system-wide unique 
initialization hyper-dimensional vector, denoted as 𝐼𝑉. 
Without loss of generality suppose that the state of 
each system’s component changes over time in discrete 
steps. Suppose also that the value range of the 
component’s state is finite, bounded. Thus the state of 
a component at time t is encoded by cyclically shifting 
the initialization vector for this component by the 
number of steps corresponding to the index of the 
current state’s value i in the value range for this 
particular state, i.e. 𝑆𝑇𝐴𝑇𝐸!,!!" = Sh 𝐼𝑉! , 𝑖 .     

The aggregated system state is constructed using 
the historical data by encoding states of all components 
leading to the particular fault into a single distributed 
representation: 𝑆𝑌𝑆!"#$%! = 𝑆𝑇𝐴𝑇𝐸!!"!

!!! , where 
N in this case is the number of system’s components 
and 𝑆𝑇𝐴𝑇𝐸!!"  is the state of component j encoded 
using hyper-dimensional distributed representation. 
The state of each component is encoded by cyclically 

Automation node 2

Automation node 1 Automation node n

Plant

Distributed 
Automation Layer

Cognite reasoning

Bio-inspired representation

Reasoning Agents

 
Figure 2. A distributed automation system enhanced with 
the autonomous intelligence capabilities based on the 
usage of multi-agent technology and distributed hyper-
dimensional binary representation.  
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shifting the initialization vector for this component. In the case of several historical cases leading to the 
particular fault i, the corresponding aggregated system states for this fault are bundled together as: 𝑆𝑌𝑆!"#$%! =
   𝑆𝑌𝑆!"#$%!

! + 𝑆𝑌𝑆!"#$%!
! +⋯+ 𝑆𝑌𝑆!"#$%!

! ,  where M is the number of encountered cases leading to fault i.  
Fault identification in the proposed architecture 

The fault identification procedure has its foundation in the statistical properties of the hyper-dimensional 
random binary vectors used for encoding states of system’s components and the similarity property of the 
majority sum is used for bundling of several vectors together. The joint system state 𝑆𝑌𝑆!"#$%! is an associative 
memory of all combinations of system-wide states, which characterize the particular fault. The fault 
identification is, therefore, performed by testing the inclusion of the current pattern of system states with 
holographic representations for different faults 𝑆𝑌𝑆!"#$%!. This is done by computing the Hamming distance 
Δ! 𝑆𝑌𝑆!"##$%& , 𝑆𝑌𝑆!"#$%! , between the current system state 𝑆𝑌𝑆!"##$%& and the state of all possible faults 
𝑆𝑌𝑆!"#$%!. The closer this metric to 0.5 for the particular fault the less likely is that the current state is an 
indication of this fault.  

Performance benchmarking with related approaches 
The case study used for demonstrating the proposed cognitive fault detection system is a generic nuclear 

power plant model provided by Fortum Power and Heat, a power utility with nuclear power plant operation 
license in Finland. The Apros 6 process simulator is used to run the model. Apros 6 is a dynamic process 
simulator owned by the VTT Technical Research Centre of Finland and Fortum. Two main process loops are 
used for power generation using nuclear energy, the primary and secondary circuit. The primary circuit contains 
the reactor vessel and the nuclear fission within the fuel generates thermal energy, which heats the water in the 
vessel. The coolant pumps in the primary circuit circulate water through the steam generators and the reactor 
vessel and thus thermal energy is transferred from the primary to the secondary circuit. The pressurizer, also part 
of the primary circuit, is a vessel is partially filled with water and it is designed for pressure regulation using 
heaters and water sprays. The secondary circuit is connected to the primary through the steam generators. Heat 
from the primary circuit converts water flowing in the secondary side of the steam generators into steam. 
Turbines use the high-pressure steam flow and drive electric generators. Condensers are used to convert the low-
pressure steam after the turbines back to water.  

 
Data sources 

The functional failure identification and propagation framework was used to analyze 116 automation 
components as the sources of hardware fault /9/. Most of these components were pump and valve actuators. For 
each automation component type three specific failure modes were chosen (e.g. a  valve actuator can be set to the 
“failed open”, “failed closed” or “no electric supply” fault mode which will result in the opening, closing or stop 
controlling the valve). A component – failure mode pair defines a fault in this paper (e.g., “Valve valveID” – 
“Fails - Open”). From the 348 total possible faults (116 components x 3 failure modes per component), 92 faults 
actually affected the steady state operation of the power plant model and thus can be detected by a data driven 
fault detection system.  

In the case study the model was driven to 11 power production levels in order to get more simulation data for 
the set of faults. The 92 faults, which are detectable in the steady state of the plant, are simulated for every one of 
the 11 power levels (for a total number 1012 simulations). The results of these simulations were used to build 
data sets for training and testing the fault detection systems. Each simulation (fault - power level) contains 180 
seconds of simulation time. Data set entries are generated by 37 monitored simulation signals. Three statistical 
values are generated per signal leading to a 111 inputs per entry (37signals x 3statistical values per signal). The 
data sets had a total of 1012 entries (same as the number of simulations), each with 111 inputs (generated by the 
37 logged signals) and at the end every entry contains the classification attribute. 

 
Reference technologies and selected results of benchmarking  

The performance of the proposed approach was compared to the performance of a multilayer perceptron 
Artificial Neural Network (ANN), a decision tree, and a K-nearest-neighbors (KNN) classifier. The WEKA tool 
and MATLAB were used to benchmark the accuracy of the fault detection of the proposed architecture. Note 
that the decision tree and ANN produce a single prediction for a given input. The KNN classifier and the 
proposed approach produce a ranked list of possible results. During the benchmarking process an accuracy of the 
fault identification was assessed. The accuracy was measured as the ratio of the correctly identified faults over 
all presented cases from the test set.  
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To the best of the authors’ knowledge 
benchmarking machine learning techniques 
operate only in the centralized mode. That is 
the data set presented for the fault detection 
should have the same structure as the training 
data set. In this article a zero knowledge about 
the underlying component interdependencies is 
assumed. Therefore all the compared 
approaches were trained by presenting the state 
values from all system components.  

The results of comparison of the 
considered approaches are shown in Figure 3. 
The main result indicated by the figure is that 

the accuracy of the fault identification by the proposed approach outperforms the other approaches even when 
considering the top first result. Namely the best ANN’s accuracy index was nearly 0.6; the accuracy of the 
decision tree was 0.65. The best accuracy was demonstrated by both KNN classifier and the proposed approach 
(0.68 and 0.71 correspondingly). When considering top three results both KNN and our architecture show the 
accuracy above 0.9 with the accuracy of the proposed approach toping at 0.95. The presented above result is a 
very positive for the architecture. Showing either matching or in most of the cases superior performance over the 
traditional approaches our approach has one more unique advantage: it is suitable for the distributed 
implementation. 
 
5 SUMMARY 

This article introduced selected applications of a mathematical framework for cognitive computing in the 
context of industrial automation systems. The cases for classification of temporal patterns and fault detection in 
complex systems were considered. The main message delivered by the article is that the usage of distributed data 
representation and specifically its binary variant (binary hyper-dimensional codes) enables rather complex 
analysis directly on or close-to the resource-constrained nodes (controllers and sensors). Streamlining and 
automating the root cause analysis is on the research agenda since many years now.  In /10/ the authors overview 
the progress of the event correlation techniques and provide a set of recommendations for future development of 
event correlation techniques in the context of system management. These recommendations include: a.) The next 
generation event-correlation systems must be able to deal with uncertain knowledge; b.) Better learning 
techniques to improve the accuracy of case-based systems; c.) Faster algorithms based on binary vector mapping 
which would convert a problem of correlating spatiotemporal events from complex cross-matching of “IF-
THEN” rules into binary vector mapping operations. The authors of this article conjectures that applications of 
the biologically inspired computing framework presented in herewith has an excellent potential for addressing 
these challenges.  
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Figure 3. The results of benchmarking: ANN, decision tree, KNN 
and the proposed approach. 


