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ABSTRACT
This paper presents the elements of sensing optimization. We concentrate on robotics applications and present

the hardware, sensing capabilities, communication, state estimation and planning optimization methods. Three

research environments are presented. Utilizing a micro aerial vehicle (MAV) as a sensing machine for an

unmanned ground vehicle (UGV) is discussed in detail. The communication between the UGV and MAV is

discussed and the planning of MAV missions to best serve the interest of UGV is presented.

1 INTRODUCTION

Autonomous machines and highly automated processes have an increasingly many operational sensing degrees

of freedom: camera systems whose imaging areas can be chosen by focal length and pose, multi-sampling/multi-

analysis chemical process analyzers, and web quality scanners are examples of operable sensing devices. With

the development of Internet of Things machines are becoming capable of sharing sensing data online and thus

they  may  request  each  other  to  carry  out  sensing  missions  for  mutual  benefits.  In  one  extreme  one  of  the

autonomous machines is the master – e.g. a forest harvester or autonomous multipurpose loader – commanding a

special purpose sensing machine – e.g. an unmanned aerial vehicle – to collect data relevant for the task

allocated to the master machine [1,2]. In the other extreme the two machines are operating on equal terms each

having its own task and performance criterion but benefitting from cooperative sensing and exchange of data.

Optimal sensing is also strongly linked to the studies on perceptive behaviour of humans and animals [3,4].

Sensing adds value only if the information about the state of the system is uncertain. Thus the most natural

framework for formulating and solving optimal sensing problems is the partially observable Markov decision

processes  (POMDP).  If  the  system  is  given  a  task  and  performance  measure  in  the  form  of  maximizing  the

expected rewards (minimizing costs) during the task, sensing degrees of freedom appear in the problem on equal

footing with regular control actions. Indeed, in the case of moving machines, sensing degrees of freedom are

partly related to the move actions of the machine that are the regular control actions applied by the machine e.g.

to find its way to a given location. A humanoid robot walking with some uncertainty and finding its way to a

given goal location by using vision based simultaneous localization and mapping (SLAM) is an example of this:

it seeks efficient policies of selecting walk lengths/directions after which observations for SLAM are made.
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Completing a task under uncertainty should often be cautious: in addition to favoring plans that minimize the

accumulated costs also the uncertainties about the costs are considered. In our topological route planning the

uncertainties have been dealt with in two ways: either a plan is penalized by a term proportional to the variance

of the costs [5], or the objective is to maximize the probability of staying below given costs [6]. Instead of

carrying out a cost minimizing task a system may be only exploring its operational environment. In such a case

the objective is to minimize the entropy of the state information.  Offline solution methods of POMDPs for

reward collecting cases – although computationally notoriously complex – can be approximated because the

objective is a linear functional of the probability distribution of the state [7]. However, this no longer holds when

maximizing the mutual information and hence online solutions based on tree searches must be applied [8,9].

This paper is organized as follows. Section 2 presents our robotic subsystems. Section 3 discusses the

communication capabilities. Section 4 describes the key algorithmic development in our application.

2 ROBOTIC SYSTEMS AND SENSING SUBSYSTEMS

We have implemented an operable camera rig on the top of a commercially available indoors wheeled robot. The

camera rig has three cameras the orientation of which can be changed on-line. Thus the system can be in three

modes: three camera stereo-vision for accurate distance measurements, two-camera stereo-vision and a

monocular vision in order to simultaneously get distance information to objects of interests and detection of

previously undetected objects, and as three monocular cameras for covering robot’s surroundings widely for

object detection. The tasks for the robot are e.g. to navigate along a given route while avoiding collisions with

dynamic objects in the scene. In order to manage this task, the robot must switch between the camera modes.

Nao is a commercially available humanoid robot used widely in man-machine interaction studies. Nao can be

commanded to turn a given angle and then to walk a given distance. However, the Nao motion is rather

uncertain, so that when commended to advance 1 m, the translational uncertainty is of the order of 10 cm and

transverse uncertainty is of the order of 20 cm. Furthermore, Nao’s vision-based localization during the walk is

rather uncertain. For Nao to navigate in an environment of known obstacles, it must alternate between walking

mode and vision-scanning mode. In the vision mode, Nao seeks markers that are detectable and then

simultaneously localizes itself and maps the markers (SLAM). However, the robot must solve the problem: how

long should the walks be in order for the robot to navigate to its target location in shortest time. In too short

walks a lot of time is spent in SLAM, for too long walks, a lot of corrective actions are needed as the end point

of the walk differs largely from the expected end point. Optimal cooperative sensing is studied with full scale

machines. In the experimental setup an MAV (Micro Areal Vehicle) provides complementary abilities to an

UGV (Unmanned Ground Vehicle). An MAV can provide information from a height and move fast, while it is

not constraint to ground obstacles. An MAV equipped with appropriate sensory and communication capabilities

is thus a strong candidate to act as a controllable sensor for a UGV on the ground.

UGV is a small multipurpose wheel loader capable of moving off-road with obstacles of 20cm high and 20deg

ramps. It uses standard localization sensors: GNSS, wheel odometry, 3 axes gyros and 3 axes accelerometers,
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and EKF to generate 6D pose (3 positon and 3 orientation) estimates of the main body and the corresponding

covariance matrix. Orientations are updated at the rate of 200 Hz while positions at 10 Hz. UGV is equipped

with a tilting (nodding) 2D Laser scanner to provide a 3D range data. Appropriate transformation convert laser

points given in the sensor frame to a global frame. Collection of all the range data point is thus called point

cloud. Though nonlinear transformation, we use approximation and linearization to calculate uncertainties of the

data in the global by including contributing uncertainties, namely those of pose estimation, calibration, and Laser

sensor noise [2]. These calculations are done in real time xPC target module as shown in Figure 1.

Figure 1. Navigation, mapping and planning architecture on UGV.

The MAV architecture is similar but with two main differences. First, for odometry, it uses visual odometry

appropriate for aerial vehicle with limited computational power and down looking cameras. Second, MAV does

not have a Laser scanner, but it uses ground looking stereo cameras and disparity of the images for point cloud

generation. Both vehicles are capable of following trajectories and visiting ways points.

Figure 2. Left: UGV, multi-purpose wheel loader. Middle: tilting 2d laser scanner. Right: UGV and MAV

cooperative sensing and planning scenario.

The environment is mapped on a 2D grid with each cell 20cm wide on both sides. Point clouds generated either

on UGV or MAV are converted first to height maps. All points falling into one cell are assigned to the height of

that cell by fusion based on Bayesian update. Data coming from later visits or the other vehicle are treated the

same way. Thus the height map is a 2D matrix with mean and variance of the heights. This conversion is in a

sense a resampling process. Based on the height map and gradient thresholding obstacle map is then generated.

Ref. [2] provides more details on this and technics to improve accuracy of the obstacle map. The obstacle maps

described above are metric maps. In addition to the obstacle map, we also use topological maps that define
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connectivity of the spatial locations of the same environments. Topological maps are best suited for high level

path and mission planning, because they render the planning problem computationally tractable [10]. The

topological map is modelled using graphs encoding traversal costs between nodes and their uncertainties.

Consider an UGV traveling from node A to node B in the topological map, as shown in Figure 2, right. Assume

that some or all of the traversal costs of the graph edges are however initially highly uncertain. Therefore,

optimal sensing planning is an instance of POMDP problem, where the planner must determine both UGV’s

traversal actions on the graph and possible execution of observation missions by the MAV. The cost to be

minimized can be the length of the path, risk of taking a route (uncertainty about the traversability), or/and minus

the chance of reaching a time deadline (for example in the case of MAV and limited battery power). Topological

plans, which are sequences of nodes to be visited by MAV and UGV in a certain order, are then converted to

equivalent metric locations on the obstacle map. A geometrical path is then planned that satisfies kinematic

constraints of the UGV. Due to holonomic nature of the MAV metric way points are used directly.

Alternatively, the MAV may be used to reduce the uncertainty about the UGV’s state. For example, in GPS

denied area uncertainty of the state of the UGV will increase. MAV route can be planned to provide additional

sensing data needed to reduce uncertainty.

3 COMMUNICATION BETWEEN MAV AND UGV

In practical cooperative sensing the communication between the machines is of vital importance. The system of a

UGV, and an MAV described above is arranged as shown in Figure 3. In addition to the machines a user

interface (UI) is available for tests.

Figure 3. Communication architecture, MAV, UGV, UI.

For the UGV and MAV to cooperate, both must be able to execute their part of the task independently as single-

vehicle operation, and to communicate relevant data and commands to each other. The main information to be

shared is the obstacle map and the topological map for planning. The single-vehicle operation is handled by the

on-board Robot Operating System (ROS) [11]. ROS is a robotic software framework based on publish/subscribe

pattern that allows software nodes to communicate with each other. A message broker initializes the

communication, after which the messages are sent directly between the subscriber and publisher nodes.

WLAN

ROS
DDS

ROSROS
DDS DDS
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In robust multi-vehicle communication, ROS components are interfaced to a Data Distribution Service (DDS)

communication middleware [12]. The MAV/UGV communication via WLAN is often unreliable. and can be lost

occasionally. Although ROS can be used over a multi-vehicle network connection, if communication is lost

between any ROS publisher, subscriber or message broker, it cannot be automatically renewed. DDS is an

Object Management Group communication standard that enables scalable, real-time and high performance data

distribution in a publish-subscribe manner. Quality of Service parameters are used to define the communication

parameters such as required timeliness, liveliness and reliability of the data distribution. DDS is currently used

e.g. by NASA for teleoperation and THALES for air traffic  control.   DDS  is  also  planned  to  be  used  as

communication method in major future versions of ROS, collectively denoted as ROS 2. To synchronize the

messaged in the environment of each ROS core process having its own time the Network Time Protocol (NTP)

is utilized. One of the computers will act as an NTP server while all the other are clients.

Stereo image processing to produce point clouds is computationally heavy. Due to limitations of computational

power and communication due to our WLAN, the computational load needs to be distributed between MAV and

UGV. The bandwidth limitations prevent distribution of raw images. Thus the sensor data is pre-processed into

3D occupancy grids before sending it to UGV. The common obstacle map generation and optimal observation

planning algorithms run on the UGV. This distribution of tasks results in manageable data flow in the network.

4 ALGORITHMS FOR OPTIMAL PLANNING OF SENSING

Optimal planning for sensing is a POMDP problem that has been widely studied, see [7] , and thus solved with

dynamic programming. The objective is to maximize the prior expectation of posterior optimal performance: one

must  consider  each  possible  sensing  data  that  may result  from a  sensing  action,  find  out  which  action  towards

completing the task would be taken as a result of that data, assess the resulting performance, construct the

probability distribution of performances resulting from a sensing action taking into account the prior distribution

of data values, and finally choose the sensing action that has the most attractive distribution of the performances.

Optimal sensing can be solved in offline or online. Offline solution provides the optimal control action as a

lookup  for  any  current  state  information  whereas  online  solution  is  produced  each  time  for  the  current  state

information only. Offline solutions are extremely hard to compute but results being lookups, they are quick to

use. Online solutions are usually open loop in that they find the optimal sequence of actions without considering

how the future actions depend on the data between current time and the actuation time. Closed loop solutions

provide the optimal actions as functions of the future data collected before the actuation time. The performance

of the open loop solutions is usually improved by the receding horizon principle.

We have considered the algorithms for optimal sensing for UGV/MAV cooperation in topological-map-based

exploitation when the attitude towards risks is taken into account [6,7], and in exploration for the wheeled robot

[8,9]. We solved the Nao walk length problem with particle filtering SLAM and QMDP planning.
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5 CONCLUSIONS

This paper provides an overview on our research environment for optimal sensing and the results achieved.

When implementing practical systems with optimal operation of sensing, a robotic platform, sensing degrees of

freedom via operable sensors on a robot or special purpose sensing machines, communication between the

machines, and algorithms for state estimation and planning optimization are needed. The paper presented some

approaches to meet the requirements of optimal cooperative sensing, but the methods and techniques need to be

adapted to the specifics of the problem rather than expecting universally successful approaches.
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