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ABSTRACT 

This paper considers the problem of selecting controlled variables in a pilot CFB, which can be operated in air 

and oxy combustion modes. For air combustion, a wealth of control designs and experiences are available. For 

the novel process of oxy combustion (combustion with a mixture of oxygen and recycled flue gas for facilitated 

CO2 capture), input gas compositions can be adjusted separately from the flows, which decouples fluidization 

and oxygen carrying tasks and introduces new degrees of freedom and alternative choices for control. 

The approach of self-optimizing control was formulated by Skogestad and colleagues in a series of papers in the 

2000s. It acknowledges that obtaining and maintaining exact plant-wide models for centralized online 

optimization is not likely in practice. Instead, self-optimizing control searches for a set of controlled variables 

which when kept at their constant setpoints, result in plant performance with acceptable loss despite 

disturbances. Steady-state economic loss evaluation is used for screening alternative control structures, studies 

for dynamics and controllability must follow. 

Steady-state approximations of a detailed dynamic model for the pilot CFB were used in analysis. Air firing 

results were in line with common practice which supported method validity. Oxy firing results serve as a first 

step towards analysing alternative control options; optimal control solutions for air firing might not be optimal 

for oxy firing. 

1 INTRODUCTION 

The purpose of automatic feedback control is to enable operating the whole plant in a manner that maximizes 

profit, in the presence of uncertainties and disturbances, using the measurements and manipulated variables 

available /1/. Although there is a vast amount of control methodologies and algorithms available, systematic 

tools for the first tasks in control structure design - choosing controlled variables (CVs) - are rare.  

Self-optimizing control involves a systematic procedure that aims at choosing constant-setpoint CVs which 

result in close-to-optimal performance across the plant despite disturbances in the processes. Since plant 

performance is often determined by steady state operation economics, the analysis is conducted in steady state, 

with a priori set scenarios for disturbances and implementation errors. As such the method provides a screening 

of a (potentially very large) set of CVs and to validate the choices, further studies taking e.g. system dynamics 

into account must follow. 

The self-optimizing control approach to plant-wide control was proposed by S. Skogestad and colleagues in a 

series of papers (e.g. /6/, /13-14/) and formulated based on ideas drafted by several authors such as Morari, 

Arkun and Stephanopoulos /8/, Shinnar /12/, Luyben /7/, and others. The approach is based on the fact that in 

control, model-based control paradigms (such as MPC) require good dynamic models to be successful in 

practice. However, good plant-wide models are often unavailable or unaffordable. Instead, control is often based 

on a set of simple SISO loops, and more complicated or unconventional solutions require a demonstration of 

significant performance improvement and e.g. guarantees of maintainability in order to be accepted. Therefore, a 

firm motivation for control structures based on “conventional” controllers exists today as strong as ever. 

Plant-wide control approaches have been previously studied in industrial process test cases such as reactor-

separator-recycles /2/ and Tennessee-Eastman challenge /6/. Applications in power plant processes are few. In 

/5/, self-optimizing control was applied to a waste incineration plant steam network. Operation range was 
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divided into regions with different constraints and control strategies (MV-CV pairs). Authors state that this 

intuitive solution of simple control loops is an attractive alternative to complicated MPC (which could handle the 

constraints implicitly). In /10/ a self-optimizing control structure was presented for a post-combustion flue gas 

CO2 capture unit (MEA absorption). Both papers present simple dynamic simulations to justify the results. 

In this paper, the self-optimizing method is applied in a pilot CFB (circulating fluidized bed) boiler. The 

approach was first applied to conventional air-fired CFB /9/ because the available experience and existing 

solutions allow comparison between the results and practical knowledge. The approach has then been extended 

to the more complicated oxy-fired CFB, where fuel is not combusted with air but with a mixture of pure oxygen 

and recycled flue gas to facilitate CO2 capture from flue gas. When input gas composition can be adjusted 

separately from the flow, fluidization and oxygen carrying tasks are practically decoupled, introducing new 

degrees of freedom and alternative choices for control. Hence the control structure choices for oxy combustion 

can be made in a different manner than in conventional air firing. For CFB oxy combustion, several control 

issues and strategies have been discussed by Hultgren et al. /3/. The self-optimizing analysis described in this 

paper serves as the first step towards analyzing control alternatives.  
 

2 DUAL-MODE CFB PILOT MODEL 

The studied process is a 20-50 kW pilot circulating fluidized bed (CFB) boiler (detailed description in /14/) that 

can be operated in two firing modes; conventional air firing and oxy firing. Combustion takes place in a sand bed 

fluidized with combustion air. To achieve sufficient fluidization and optimal combustion conditions, air/oxidant 

feed is staged to primary and secondary feeds. Solid particles are entrained in the upward gas flow, transported 

to the top of the boiler and returned to the bed through a solids separation system (cyclone) while hot flue gas 

leaves the boiler and enters the heat recovery section. This part of the process can be referred to as the hotloop. 

In oxy combustion, fuel is not combusted with air but with oxidant, a mixture of pure oxygen and recycled flue 

gas (RFG), to produce flue gas with very high CO2 content for facilitated CO2 capture. Recycled flue gas acts as 

a thermal diluent, enabling both firing modes in the same boiler. Compared to traditional air firing, oxy 

combustion in CFB involves a structurally similar process but with additional alternatives and degrees of 

freedom for control design (see e.g. /3/).  

A dynamic Matlab/Simulink hotloop model for the pilot CFB has been adjusted and validated using real 

measurement data. Detailed description of the simulation model can be found in /11/. The model comprises a 

furnace, gas-solid separator and solids return system. Furnace model is based on 20 ideally mixed 1-D elements 

with mass and energy balance calculations. Matlab/Simulink ODE solver is used to solve the differential 

equations against time. Semi-empirical correlations are used to solve hydrodynamics, combustion characteristics 

and heat transfer. Vertical density profile is solved with defined empirical functions. 

CFB boilers are remarkably difficult to model due to various interactions in the process and physical phenomena. 

Validated dynamic models (such as /11/ which this study is based on) are invaluable in control design, but 

complex fluidization engineering models are obviously too heavy to be used online in real time control, or even 

in off-line approaches requiring iterative computations. In this study, a neural network steady state 

approximation (see e.g. /4/) of the detailed dynamic air-CFB hotloop model was used to reduce computation 

times. A model for air-firing steady state behavior was built based on simulation data. A multiple-input multiple-

output sigmoid neural network (SNN) /4/ was trained using a set of data points for each disturbance scenario. 

Main advantage of SNN is in ability to provide smooth mappings (training by adjusting sigmoid-shaped 

hyperplanes) which are often desired in process engineering applications. The model consisted of three inputs 

(fuel feed rate, primary air flow, secondary air flow) and outputs that were required either by CVs or evaluation 

of the cost function J. Model parameters were obtained using the Levenberg-Marquardt technique, number of 

nodes in the hidden layer (H=4) was based on trial and error, and linear output nodes were selected. Matlab 

neural network toolbox was used for training and model simulation. 

3 SELF-OPTIMIZING CONTROL 

3.1 Self-optimizing control – Skogestad method 

The self-optimizing control approach to plant-wide control was proposed by S. Skogestad and colleagues in a 

series of papers (e.g. /6/, /13-14/). Self-optimizing control is optimal in the sense that the minimization of a cost 

function is considered. The aim is not to directly minimize a cost function, because such optimization would 

require a perfect dynamic model, complete set of measurements, identification of all possible disturbances, and 



 

means to solve the optimization problem online. Such centralized optimization is not likely to be used in practice 

/13/ even with decreasing computing price, because obtaining and maintaining such a plant-wide model is 

usually not economical. Instead, self-optimizing control design uses a closed loop implementation and searches 

for a set of controlled variables called self-optimizing variables, which can be kept constant at all times, resulting 

in performance with acceptable loss. In some cases there is no loss /13,10/ if the optimum lies at some 

constraint(s) and constrained variables are used as CVs. Active constraints may change as the operating point 

changes, which may make direct SISO implementations impractical (reconfigurable control) and MIMO 

controller could do better. Criteria for good CVs include easy measurement, accurate control, insensitivity to 

disturbance, and sensitivity to MVs. In a multivariable case, CVs should not be closely correlated. /13/ 

Structural decisions are followed with control solution refinement, such as choice of algorithms and control laws, 

but the approach is insensitive to choice of algorithms as long as setpoints are reached: The analysis is based on 

steady-state performance, as it often determines the economic performance. Therefore, the method only provides 

a screening of a large set of CV candidates; dynamic studies must follow to justify the results. For each studied 

control structure, performance is evaluated for of a set of disturbances and implementation errors (set a priori) 

and compared to truly optimal performance, and the promising choices can be included in e.g. rigorous dynamic 

studies. 

The underlying optimization problem can be formulated as minimizing a cost function 𝐽𝑢(𝒖, 𝑑), subject to 

constraints 𝑔(𝒖, 𝑑) ≤ 0. Manipulated variables (MVs) u can be affected, disturbances d cannot be affected. If 

the cost of applying disturbance-optimal 𝒖𝒐𝒑𝒕 is 𝐽𝑜𝑝𝑡(𝑑), then the loss for applying 𝒖 instead of the optimal is 

𝐿(𝒖, 𝑑)  =  𝐽𝑢(𝒖, 𝑑) − 𝐽𝑜𝑝𝑡(𝑑). The problem to be solved is to find a good set of constant-setpoint controlled 

variables (CVs) among an infinite set of choices (if e.g. combinations of measurements are included as 

candidates).  

The direct loss evaluation method /13/ can be applied to static nonlinear process models, and is hence very 

general. It is a systematic procedure for selecting CVs based on loss evaluation for a finite set of disturbances: 

1) Analysis of degrees of freedom, selection of base variables u. 

2) Definition of the (economic) cost function J and constraints g. 

3) Identification of important disturbances d (process disturbance, modelling error etc.) 

4) Solving the nominal optimization problem uopt(d*) (and if not too demanding, solving the optimization 

problem for each d for an easily interpretable calculation of loss i.e. cost compared to optimal).  

5) Identification of CV candidate sets. Active constraint control can be considered for variables at their 

constraints, CVs for remaining degrees of freedom are then proposed.  

6) Evaluation of losses for using each candidate set. For each CV candidate set, loss L(u,d) is evaluated. In 

case of implementation errors, u is adjusted accordingly. 

7) Screening promising solutions and conducting further analysis. Solutions with acceptable loss (steady-

state performance) are examined for criteria such as performance in different operating regions and 

closed-loop dynamics. 

3.2 Cost function and constraints 

When the economic cost function J is well defined, it characterizes the optimal operation of a plant – operation 

that fulfils power request, process constraints, low operating costs and acceptable flue gas emissions. In this 

case, profit equals generated power (to setpoint; surplus power is less profitable and deficiency in power induces 

high cost). Fuel, air and pure oxygen costs can be estimated based on coal and O2 price and fan operation costs. 

Emissions of CO2 and SO2 involve emission trading or treatment cost (limestone addition). Deviation from the 

desired flue gas O2 (2 %) was penalized with a small cost. For the oxy firing case, other species than CO2 in flue 

gas were penalized with small cost (to include impurity removal and drying costs in CO2 processing unit). 

Plant operation is restricted by some hard constraints. In this study, upper and/or lower bounds for bed and flue 

gas temperatures (830°C ≤ Tbed ≤ 980°C, Tfg ≤ 980°C), fluidization velocity (vf ≥ 2 m/s) and flue gas O2 (cO2 ≥ 

1%) were implemented.  

3.3 Control structure alternatives 
 

Manipulated variables for air included fuel feed rate (u1), primary air flow (u2) and secondary air flow (u3) [kg/s].  



 

For oxy, MVs included fuel feed rate (u1), primary RFG (u2), primary oxygen (u3), secondary RFG (u4) and 

secondary oxygen flow (u5) [kg/s]. 

Out of 30 structures studied, 8 different control topologies are presented here for air and oxy firing. 
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1. power [kW], primary air / fuel ratio [-], flue gas O2 [%] 

2. fuel feed [kg/s], primary air / fuel ratio [-], flue gas O2 [%] 

3. power [kW], fluidization velocity [m/s], flue gas O2 [%] 

4. fuel feed [kg/s], fluidization velocity [m/s], flue gas O2 [%],  

5. T bed middle [°C], T flue gas [°C], flue gas O2 [%] 

6. T bed middle [°C], fluidization velocity [m/s], flue gas O2 [%] 

7. T bed middle [°C], primary air / fuel ratio [-], flue gas O2 [%]  

8. T bed middle [°C], sec / prim air ratio [-], flue gas O2 [%] 
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1. power [kW], prim gas volume [m3/s], T bed bottom [°C], sec RFG / prim RFG [-], flue gas O2 [%] 

2. T bed middle [°C], vf [m/s], T bed bottom [°C], T bed top [°C], flue gas O2 [%] 

3. T bed middle [°C], vf [m/s], prim gas O2% [%], total secondary flow [kg/s], flue gas O2 [%] 

4. power [kW], vf [m/s], prim gas O2% [%], sec RFG / prim RFG [-], flue gas O2 [%] 

5. power [kW], vf [m/s], prim gas O2% [%], sec RFG / prim total flow [-], flue gas O2 [%] 

6. power [kW], prim gas volume [m3/s], prim gas O2% [%], sec RFG / prim RFG [-], flue gas O2 [%] 

7. power [kW], bed density bottom [kg/m3], T bed bottom [°C], bed density top [kg/m3], flue gas O2 [%] 

8. power [kW], vf [m/s], prim gas O2% [%], bed density top [kg/m3], flue gas O2 [%] 

Setpoints for the CVs were picked from the nominal optimum. To find correct MV values, the control problem 

was solved by optimizing a MIMO problem under constraints: the sum of squared deviations between CVs and 

their setpoints was minimized, with constraints overruling minimization. Active constraints were thus not 

explicitly considered in control. Active constraints typically result in reconfigurable SISO control requirements, 

e.g. with different load levels. These implementation aspects were not in scope of this study. Optimization was 

performed with enhanced fmincon (Matlab), with a few dozen repetitions from random initial search points.  

3.4 Disturbance scenarios 

Five process disturbance scenarios were studied: d1) no disturbances, d2) fuel heat value -5%, d3) fuel heat 

value +5%, d4) fuel moisture -10%, d5) fuel moisture +10%. Several additional cases could be included (e.g. air 

ingress, pressure deviations, O2 purity etc.) 

4 RESULTS 

4.1 Air combustion 

disturbance 

control configuration, c 

c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 

d=1 (nom.) 0 0 0 0 3 0 0 0 

d=2 0 79 11 77 13 12 1 1 

d=3 3 6 3 6 15 13 10 10 

d=4 11 12 10 12 15 13 11 12 

d=5 4 4 4 5 1 4 4 4 

mean loss 0.06 0.33 0.09 0.33 0.15 0.14 0.08 0.09 

rank 1 8 4 7 6 5 2 3 

Table 1. Air firing – Ranking of control structures based on average loss for disturbances. 

disturbance 

Optimal CV values Optimal MV values 

flue gas O2 

[%] 

T bed, 

middle 

[°C] 

power 

[kW] 

vf 

[m/s] 

prim air/ 

fuel [-] 

fuel feed 

[kg/s] 

primary air 

[kg/s] 

secondary air 

[kg/s] 

d=1 (nom.) 1.0 933 44.1 2.4 6.3 0.0025 0.0157 0.005 

d=2 1.0 930 44.1 2.6 6.6 0.0026 0.0172 0.005 

d=3 1.5 941 44.8 2.0 5.2 0.0023 0.0121 0.009 

d=4 1.0 937 44.1 2.5 7.3 0.0020 0.0147 0.000 

d=5 1.0 934 44.1 2.6 8.1 0.0022 0.0181 0.000 

Table 2. Air firing - Optimal CV and MV values for each disturbance. 



 

The outcomes for air-firing (Table 1) are in line with current control practice, which encourages the use of the 

method. The results support controlling power, primary air / fuel ratio and flue gas oxygen to their setpoints 

(c=1) using the three MVs available. This is the common approach, usually implemented with SISO controllers 

so that power is adjusted by fuel, primary air flow is feedforward from the fuel feed and secondary air is used for 

O2 trim (flue gas O2). Bed temperature can surprisingly well compensate for lacking feedback from power (c=7). 

Open-loop control solutions such as constant fuel feed (c=2,4) cannot handle disturbances, which can clearly be 

seen for decreased fuel heat value (d=2). 

CV setpoints (optimal CV values) and corresponding MV values are given in Table 2. Because one of the criteria 

for a good CV is insensitivity to disturbance, good CVs should have similar optimal values for each disturbance. 

It appears to be optimal to operate at flue gas O2 constraint (1 %) and required power (44 kW) with bed 

temperatures around 935 °C. Optimal fluidization velocities range from minimum 2.0 to 2.6 m/s. Optimal 

primary air / fuel ratio is between 5 and 8. MVs corresponding to these optimal CV values are also given. 

Secondary air flow ranges between 0 and 0.009 kg/s. It must be noted that this is a pilot-size process, where 

secondary air feed is small in the first place. Accurate NOx modelling could also affect optimal air feed 

distribution. 

4.2 Oxy combustion 

Oxy combustion results were obtained using a linearized model around 85% load (evaporator power 39,9 kW). 

The outcome differs from air-firing. All good topologies suggest controlling power and flue gas oxygen to their 

setpoints. Here, bed temperature is obviously not a good CV instead of power, and it appears in all of the worst 

ranked options. Poorly performing structures also use e.g. constant secondary flow and bed temperatures. The 

best three topologies (c=5,4,6) are very similar, supporting constant primary oxidant O2 percentage, fluidization 

velocity or primary gas volume, and secondary RFG / primary RFG or secondary RFG / total primary flow ratio 

(best structure uses vf and sec RFG / total primary flow ratio). Fourth (c=7 with a very small additional cost) is 

completely different and controls bed densities at top and bottom as well as bed temperature at bottom. 

disturbance 

control configuration, c 

c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 

d=1 (nom.) 23 6 2 0 0 1 3 1 

d=2 23 23 167 5 5 7 10 12 

d=3 22 65 6 4 4 4 0 8 

d=4 30 1 0 0 0 0 0 0 

d=5 22 17 13 4 3 4 3 4 

mean loss 0.155 0.145 0.244 0.018 0.016 0.021 0.021 0.032 

rank 7 6 8 2 1 3 4 5 

Table 3. Oxy firing - Ranking of control structures based on average loss for disturbances. 

 

Optimal CV values 

power 

[kW] 

T bed, 

bottom 

[°C] 

T bed, 

middle 

[°C] 

flue gas O2 

[%] 

vf 

[m/s] 

bed density, 

bottom 

[kg/m3] 

bed density, 

top 

[kg/m3] 

prim gas 

vol 

[m3/s] 

prim gas O2 

[%] 

d=1 (nom.) 39.9 870 909 2.00 2.0 181.1 3.6 0.011 29.2 

d=2 39.9 875 912 2.00 2.0 181.1 3.6 0.011 30.8 

d=3 39.9 866 905 2.00 2.0 181.1 3.6 0.011 27.7 

d=4 39.9 868 907 2.00 2.0 181.0 3.6 0.011 29.1 

d=5 39.9 871 910 1.99 2.0 181.1 3.6 0.011 29.3 

Table 4. Oxy firing - Optimal CV values for each disturbance. 

 

Optimal MV values 

fuel feed 

[kg/s] 

primary RFG 

[kg/s] 

primary  

O2 feed 

[kg/s] 

secondary RFG 

[kg/s] 

secondary O2 

feed 

[kg/s] 

d=1 (nom.) 0.0024 0.0118 0.0049 0.0000 0.0000 

d=2 0.0025 0.0114 0.0052 0.0000 0.0000 

d=3 0.0023 0.0122 0.0046 0.0000 0.0000 

d=4 0.0024 0.0119 0.0049 0.0000 0.0000 

d=5 0.0024 0.0117 0.0049 0.0000 0.0000 

Table 5. Oxy firing - Optimal MV values for each disturbance. 



 

In Table 4, CV setpoints (optimal CV values) indicate that operating at the exact required power (39.9 kW) with 

flue gas O2 at its setpoint (2 %) and fluidization velocity at its minimum (2 m/s) is optimal. Optimal primary gas 

O2 percentage (27.7-30.8 %) varies, but the optimal primary gas volume is constant (0.011 m3/s). Disturbance-

optimal MV values (Table 5) indicate that in this pilot CFB, secondary flows are optimally minimized. 

5 CONCLUSIONS 

For air firing, the analysis supported the common industrial approach that can be implemented with SISO 

control; power is adjusted with fuel feed, primary air flow is feedforward from fuel feed, and secondary air flows 

are used for flue gas O2 trim. Controlling bed fluidization with fluidization velocity vf would require solution 

such as a soft sensor, but it is not clear if it would be worth the effort. Similarly, bed temperature could 

compensate lack of power feedback surprisingly well, but since power is the typical and easily measurable 

quality parameter for a power plant, it would not make sense to exclude it from control. Results for air firing in 

/9/ show that measurement uncertainty should definitely be included in study. 

For oxy firing, the best-ranked structures include power and flue gas oxygen control as well as primary gas O2 % 

control, fluidization control by vf or constant primary gas volume (also easier to achieve than constant mass 

flow), and feedforward from primary RFG or total primary gas flow to secondary RFG. Secondary gas flows are 

optimally minimized in the pilot (which probably cannot be generalized to industrial-size CFBs). 

 

The self-optimizing control analysis is a straight-forward method, yet surprisingly tedious to complete - the need 

for good tools became evident especially during optimization. Analysis results are sensitive to small changes in 

costs and constraints, which highlights the importance and difficulty of translating economic operation 

objectives into control. An extensive set of disturbances should be used for ranking is based on average losses. 

Final decisions for the control structure should naturally not be made based on direct loss evaluation in steady-

state operation. Issues of controllability and dynamic behaviour as well as process instrumentation cost should be 

considered. The self-optimizing approach is useful in screening CV candidates for further studies. 
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