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Abstract

Utilization of waste heat is of great interest to the ship industry, and the need for effective data-
based learning methods is steadily increasing. Kernel-based models can easily be fitted to data, but
models tend to become large as the number of data points grows. Model complexity is hence a
problem, and finding sparse solutions is of great importance. We evaluate two identification methods
which promote sparsity in the models. A regularization based approach, using `2-regularization with
iterative reweighting is compared to support vector regression. Both methods are trained and vali-
dated on simulated data from a marine diesel-engine fresh-water cooling system, for modelling the
recovered waste heat energy based on the engine load. No assumptions on the underlying structure
of the system are needed, which make the methods flexible and easy to implement in practice.
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1 Introduction

The interest of improving energy efficiency in ships is steadily increasing due to uncertain fuel costs and
strict international maritime rules. One way to save energy is to schedule on-board tasks such as fresh
water evaporation, air conditioning and general heating to times when excess waste heat is available.
By doing so the use of additional heating can be reduced. Good forecasts of both available energy and
energy demand are required to schedule such tasks optimally during operations. This is a difficult task,
since marine vessels are complex systems, which often vary substantially from ship to ship. Our goal is
to develop techniques for modelling ship energy systems at a general (black-box) level, which will allow
our methods to be applied for any ship, regardless of exact knowledge of the underlying system. Such
models can either be used for tracking of heat flows or forecasting.

In this paper we consider an engine high-temperature fresh water cooling system, where the available
waste heat energy is to be modelled. Simulated data were obtained from Zou et.al. [12], and was
considered to be actual measurements from a real ship with unknown underlying structure. Kernel
functions are used to learn the system behaviour from data. Two methods are evaluated for identification
of sparse kernel representations. An `2-regularization based method with iterative reweighting of the
regularization parameters have been compared to support vector regression (SVR) [7].

Various regularization techniques which promote sparsity are proposed in literature [2, 3, 4]. Here
the `1-norm is the most commonly used regularizer, due to it promoting sparsity while having convex
properties. However, in this article we are using the `2-norm as a regularizer instead, which makes the
problem quadratic and can hence be solved explicitly. The `2-norm will not in itself promote sparsity,
and iterative reweighting and a small threshold which sets small parameters to zero are needed.

It is well known that support vector machines can be used for classification problems and will result
in sparse solutions [7]. Support vector machines can easily be extended to regression problems, while
preserving its sparse properties [11, 9, 6]. Support vector regression has been applied on a broad range
of problems [5, 7, 10, 8], and is hence considered as a benchmark in this article.
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The paper is organized as follows. In the Section 2 we describe the basics of kernel functions and how
they can be applied to regression. In the Section 3 we give a short theoretical overview of out proposed
methods. In Section 4 we evaluate the methods in a case study for forecasting of waste heat recovery in
ships.

2 Kernel Functions

Kernel functions are often used for non-linear black-box identification of systems where the underlying
model structure is poorly known. Kernel functions can be interpreted as a measure of similarity or
distance between features, and are often defined to be real-valued functions, K(x,x′) ∈ RN×N , of input
vectors x,x′ ∈ RM , where N is the number of data points and M is the number of inputs [6]. The
simplest form of kernel is the linear kernel which is represented by K(x,x′) = xTx′. Another kernel,
commonly user for regression, is the Gaussian kernel. The Gaussian kernel is a radial basis function
(RBF), which is expressed by

Ki,j(xi,x
′
j) = exp

(
−γ‖xi − x′j‖2

)
, i, j = 1, ..., N, (1)

where ‖xi − x′j‖ is the Euclidean distance between the data points and γ is a design parameter defined

as γ = 1
2τ2 , where τ2 determines the ”width” of the kernel (which can be compared to the variance of

a Gaussian probability density function). Given a set of data points {x,y} and a kernel K(x,x′), a
regression model which is linear in the model parameter θ can be defined as

ŷ = K(x,x′)θ. (2)

Since the number of elements in θ equals the number of data points, is the model expected to fit the
training data perfectly, and overfitting is hence expected. In order to prevent overfitting, it is necessary
to find sparse representations of the kernel function. One way to achieve this is to find sparse solutions
for θ, in which many of the elements are zero, and the model complexity is reduced.

3 Promoting Sparsity

An ideal way to determine a sparse θ-vector from Equation (2), is by minimizing the cost function

J = ‖y −K(x,x′)θ‖22 + λ‖θ‖0, (3)

where ‖θ‖0 is the `0-norm, which denotes the number of nonzero elements in θ, and λ is a regularization
parameter. This problem is, however, a combinatorial optimization problem which cannot be solved
efficiently [3]. To address this problem, various relaxations of the `0-norm, such as using the `2- or
`1-norms, can be introduced. Although it is well known that the `1-regularizer promotes sparsity, have
we chosen to relax Equation (3) with an `2-norm, combined with iterative reweighting, to drive some
parameters very close to zero. The advantage of using an `2-regularization in stead of `1 is that explicit
solutions exist. We have compared the iterative reweighting procedure to support vector regression as a
benchmark.

3.1 Iteratively Reweighted Least Squares

To make the problem presented in Equation (3) tractable, we wish to relax the `0-norm with an `2-norm.
This makes the problem quadratic, which makes it possible to find an explicit solution. We introduce a
diagonal weight matrix Λ, and state the new problem as

argminθ ‖y −K(x,x′)θ‖22 + ‖Λθ‖22, (4)

which has the explicit solution

θ̂ = [ΛΛT +K(x,x′)K(x,x′)T ]−1K(x,x′)Ty. (5)

However, the solution will not promote sparsity by itself, and an iterative reweighting procedure for Λ is
hence introduced. In order to enhance sparsity, the weight matrix is set to

Λ(k) = diag

(
α

|θ̂(k)|+ ε

)
, (6)



where k is the iteration index, α is a scaling parameter and ε is a small positive parameter which prevents
numerical division-with-zero. Since `2-regularization will not result in sparse solutions (the only way by

which θ̂i = 0 is when the solution to the unregularized problem is zero), a small threshold δ is introduced,

so that if ˆ|θ|i < δ, then θ̂i is set to zero. The effects of reweighting are presented in a contour plot in
Figure 1.

Remark (A Bayesian perspective). Solving Equation (4) is equivalent to solving a maximum a posteriori
(MAP) problem, which is defined as maximizing the posterior distribution p(θ|x,y), with respect to θ.
The posterior distribution is given by Bayes’ theorem

p(θ|x,y) ∝ p(y|θ,x)p(θ), (7)

where p(y|θ,x) is the likelihood function and p(θ) is a Gaussian prior distribution with zero mean and
variance σ2

p. If σ2
p →∞, the MAP solution will approach the maximum likelihood (ML) solution. [1]

θ
1

-2 -1 0 1 2 3 4

θ
2

-2

-1

0

1

2

3

4

 δ

ML

 MAP

θ
1

-2 -1 0 1 2 3 4

θ
2

-2

-1

0

1

2

3

4

 δ

 ML

 MAP

Figure 1: Contours for the unregularized error function (blue) and the regularization function (red).
Optimal values for both the regularized (MAP) and unregularized (ML) cases are marked out with black
dots. The figure to the right shows the effects of reweighting

It is also worth mentioning that when setting a weight to zero, can the whole corresponding column
in K(x,x′) be removed, and hence reducing the complexity of the model. Our proposed method can
be considered a variation of an iteratively reweighted least-squares (IRLS) approach [3]. The complete
algorithm is presented below.

Algorithm 1 Iteratively reweighted least squares

Initialize ε, δ, α,Λ = 0
for iteration k = 1, ...,K do
θ̂(k) = [Λ(k)Λ(k)T +K(x,x′)K(x,x′)T ]−1K(x,x′)Ty

Λ(k) = diag
(

α
|θ̂(k)|+ε

)
if θ̂

(k)
i < δ then

θ̂
(k)
i = 0

end if
end for

Although there are several design parameters to initialize, most of them are fairly easy to determine.
The parameter ε can simply be chosen small enough. A logical way to initialize the Λ-parameter is to
initialize it to be zero, which would correspond to unregularized solution. The parameter δ is chosen so
that small θi are cut off. Parameter α is a scaling parameter, which ensure that all weights will not get
too heavily regularized, this parameter can be selected through cross validation. Note that the ratio α/ε
is the largest value an element in Λ can obtain. Depending on which kernel is used, additional parameters
may occur. Such parameters are also typically determined through cross validation.



3.2 Support Vector Regression

Support vector machines are powerful techniques for data classification and regression [11], which has
been applied to robust black-box system identification. In support vector regression, a regularization
term, which is taken as a quadratic function of the parameters, is minimized subject to linear constraints
on the prediction error magnitudes. The solution is usually posed in terms of a dual maximization
problem, in which a Lagrange function is maximized with respect to the Lagrange multipliers associated
with the linear constraints. In support vector regression, a nonlinear model is represented by defining
a feature space, which can be expressed in terms of an associated kernel with the same dimension as
the data set, and it is therefore not necessary to compute the nonlinear mappings explicitly. Support
vector regression has several appealing properties for black-box identification. The solution is defined in
terms of a convex quadratic minimization problem, for which convergence to the global solution can be
guaranteed. In SVR, the parameter vector θ̂ is determined by solving the problem

min
1

2
‖θ̂‖2 + C

N∑
k=1

(ξk + ξ∗k) (8)

subject to ε-insensitive constraints

y(k)−
N∑
l=1

Kk,l(xk,x
′
l)θ̂l ≤ ε+ ξk (9)

−y(k) +

N∑
l=1

Kk,l(xk,x
′
l)θ̂l ≤ ε+ ξ∗k (10)

ξk, ξ
∗
k ≥ 0

Here ξk, ξ
∗
k are slack variables, and C is a design parameter which determines the weight of the prediction

errors relative to the first term, which acts as a regularization term. The Lagrange function has a saddle
point with respect to the primal and dual variables at the solution associated with Equations (8) and
(9) [7]. The support vectors are those data points that lie on the boundary or outside of the ε-tube (i.e.
the data points which satisfy constraints (9) and (10) with equality). Those points are the only ones
contributing to the prediction model, and hence we have a sparse solution [1]. The number of support

vectors is equal to ‖θ̂‖0.

4 Case Study: Forecasting of Waste Heat Recovery in Ships

Kernel functions can be used as black-box models for describing systems where the underlying models
structure is either complex or is poorly known. We have evaluated our proposed methods for identifying
sparse kernel functions on data from a fresh water cooling system for a marine diesel engine. The data
we have used is obtained from a simulator developed by Zou et.al. [12]. Since the structure of engine
cooling systems may vary significantly from ship to ship, and information about the exact structures may
be hard to obtain, there is a great interest of finding general methods for identifying black-box models
based on data.

The main purpose for an engine cooling system is to keep the engine temperature within an acceptable
temperature range. Excess heat is extracted from the system through heat exchangers, and it can as an
example be used for fresh water generation. Utilizing excess heat from a system is referred to as waste
heat recovery. A possible configuration for such a process is presented in Figure 2.

The goal is to describe the input-output dependence between the engine load (input) and recovered
heat (output). Approximately 7 hours of data (sampling time 100 seconds) were used for training and
validation. A total number of N = 500 data points were used. Dynamics are neglected due to the long
time horizon and large sampling time. A Gaussian RBF-kernel, described by Equation (1) was used. The
iteratively reweighted least-squares approach was initialized with parameters γ = 100, ε = 10−16, δ =
0.005 and α = 0.001. Parameters γ and α were determined through cross validation. The support vector
regression was initialized with parameters γ = 1, ε = 0.004 and C = 100. Results are presented in
Figure 3 and Table 1.

Both methods show excellent fit on both training and validation data, and are hence well suited for
forecasting of waste heat recovery, given different scenarios of future engine loads. Although the SVR
algorithm shows slightly higher validation error, is it likely to be less overfitted to the data due to a
significantly lower number of support vectors and smaller gap between training and validation RMSE.



Figure 2: Schematics of a high temperature (HT), engine cooling system, illustrating a possible configu-
ration of a diesel engine (DE), heat exchanger (4N02), and mixing valves (4V01,4V02) [12].
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Figure 3: Results on training and validation data for both the iterative reweighting procedure and support
vector regression

Table 1: Number of support vectors ‖θ̂‖0 and RMSE on training and validation, for both the iteratively
reweighted least squares approach and support vector regression.

‖θ̂‖0 RMSE Training RMSE Validation

IRLS 8 0.0033 0.0085
SVR 3 0.0094 0.0095

5 Conclusions

Two methods for identification of sparse kernel functions have been validated on a simulation study for
forecasting of waste heat recovery in ships. An iteratively reweighted least-squares approach have been
proposed for finding sparsity in the parameter vector. The approach was able to reduce the total number
of parameters from initially 250 to only 8, while maintaining a good fit to the data. The reweighting
procedure was compared to support vector regression, which can be considered as a benchmark approach
for this type of problem. The support vector regression reduced the total number of parameters to only 3,
while maintaining good fit. The obtained sparse solutions are expected not to be overfitted to the training
data, and can hence be used for forecasting waste heat recovery in ships, given different scenarios for
the engine load. Further work will be directed towards evaluating these methods on larger ship systems
containing multiple diesel engines. Since the `2-norm is clearly not ideal for promoting sparsity, are other
relaxations of the `0-norm to be investigated.
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