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ABSTRACT 

 Multiobjective optimization in industry has rapidly grown in importance, as it provides the possibility for a designer 

or an engineer to consider the problem in hand as a whole. Solution to a multiobjective optimization problem 

involves several optimal solutions with different trade-offs. As a result upon optimization s(he) can understand the 

trade-offs between different solutions and subsequently choose the most preferred solution. In this paper, we provide 

a bird’s eye view of the different methods available in the literature to solve multiobjective optimization problems. 

Specifically, in literature there exists at least two different research fields i.e. multiple criteria decision making and 

evolutionary multiobjective optimization. Here we present briefly an introduction to these two research fields. Thus 

this paper shall active as a catalyst for the growth of multiobjective optimization in diverse fields of engineering. 

 

1 INTRODUCTION 

Optimization problems in industry are often considered to be single objective e.g. maximization profit, purity etc. 

and often there exists only a single optimal solution to such problems. However optimization problems are rarely 

single objective, in fact multiple conflicting objectives e.g. maximize torque, minimize cost etc. in the design of 

motors exists. We commonly refer to such problems as multiobjective optimization problems (MOPs). 

Multiobjective optimization problems usually do not have a single optimal solution, instead multiple optimal 

solutions exists with different trade-offs. Since there are multiple optimal solutions, a decision maker (DM) who is 

an expert in the subject field of MOP is involved to choose her/his preferred optimal solution(s) among them. It must 

be noted that considering all possible and appropriate objectives within the problem formulation provides a 

comprehensive understanding of the problem and enables one to find her/his preferred solution among several 

optimal solutions. There exist at least two research fields which have concentrated on solving MOPs, i.e. multiple 

criteria decision making (MCDM) /1/ and evolutionary multiobjective optimization (EMO) /2/. 

The field of MCDM dates back several decades /3/ and aims to mainly support the DM in finding her/his preferred 

optimal solution. Here often multiple conflicting objectives are converted in to a single objective problem 

considering the preferences of the DM and subsequently solved using an appropriate mathematical programming 

technique. In the field of EMO nature inspired algorithms e.g. genetic algorithms /4/, which are population based are 

used to obtain a set of solutions that approximate the set of optimal solutions using evolutionary principles. Here 

multiple conflicting objectives are considered simultaneously in the solution process /2/. In literature there exists 

several ways of classifying the methods used to solve MOPs. In this paper we use the four class based classification 

proposed in /1/, which is based on the role played by the DM in the solution process. The four classes include no-
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preference, a priori, a posteriori and interactive methods which are explained later in this paper. This paper presents a 

brief overview of the field of multiobjective optimization including MCDM and EMO methods and shall lay as a 

base for further study and research. 

In this paper, we first present some basic concepts and terminologies in Section 2. Next, in Section 3 we present a 

classification of the methods available to solve MOP problems. Finally we conclude in Section 4. 

 

2 PROBLEM DEFINITION AND IMPORTANT CONCEPTS 

Let us consider MOP of the following form: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  {𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑘(𝒙)}  

       Subject to 𝒙 ∈ 𝑆 ⊂ ℝ𝑛, 

with 𝑘 ≥ 2 objectives, 𝑓𝑖 ∶ 𝑆 → ℝ.  If MOP involves objective function 𝑓𝑖 to be maximized then we consider an 

equivalent objective function −𝑓𝑖 that is minimized. Generally, a MOP has many optimal solutions called Pareto 

optimal solutions with different trade-offs. A decision vector 𝒙∗𝜖 𝑆 is Pareto optimal, if there does not exist any other 

𝒙 𝜖 𝑆, such that 𝑓𝑖(𝒙) ≤ 𝑓𝑖(𝒙∗) ∀ 𝑖 = 1, 2, … , 𝑘 and 𝑓𝑗(𝒙) <  𝑓𝑗(𝒙∗) for at least one index j. In simple words, a 

solution is Pareto optimal if no objective function value can be improved without impairing any other objective 

function values.  An objective vector (k dimensional) is Pareto optimal if the corresponding decision vector is Pareto 

optimal. The set of Pareto optimal solutions in the decision space is called Pareto optimal set and their corresponding 

set of Pareto optimal solutions in the objective space is called Pareto optimal front. 

It is also common to define two different objective vectors i.e. ideal and nadir points that provide ranges of objective 

function values in the Pareto optimal front. An ideal point is obtained by individually minimizing each of the 

objective functions subject to the constraints (𝑧𝑖
𝑖𝑑𝑒𝑎𝑙 =  min𝒙 𝜖 𝑆 𝑓𝑖(𝒙) , 𝑖 = 1, 2, … , 𝑘) and provides the lower bound 

of the objective function values of the Pareto optimal front. A nadir point provides the upper bound of the objective 

function values of the Pareto optimal front and is usually difficult to calculate. It is common to approximate the nadir 

point using a pay-off table /1/. Recently, methods are also proposed to find a reliable estimate of the nadir point /5/, 

but are difficult to implement. In addition to the ideal and nadir points, it is also common to define an additional 

objective vector called utopian objective vector, which is calculated as 𝑧𝑖
𝑢𝑡𝑜𝑝𝑖𝑎

= 𝑧𝑖
𝑖𝑑𝑒𝑎𝑙 − 𝑒𝑖 , 𝑒𝑖 > 0, 𝑖 =

1, … , 𝑘.  The importance of utopian point is limited to account for the numerical problems that arise when ideal and 

nadir points are close to each other.  

As mentioned before, there exists several Pareto optimal solutions to a MOP and a DM is needed to choose her/his 

preferred Pareto optimal solution. There exists several ways for a DM to express her/his preference information /1/, 

/6/. A common way is to express the preference information in terms of desirable values of objective functions 

(𝑧�̅�, 𝑖 = 1,2, … , 𝑘), often termed as a reference point. In the next section we present the classification of methods used 

to solve MOPs.  

3 CLASSIFICATION OF MULTIOBJECTIVE OPTIMIZATION METHODS 

Several ways of classification can be found in the literature. Here we present the classification followed in /1/, i.e. no 

preference methods, a posteriori methods, a priori methods, and interactive methods. This classification is based on 

the role played by the DM during the solution process. Also we briefly explain each of these methods with a few 

example methods that belong to them. 

 



3.1 No-preference methods 

When a DM is not in the position to provide any preference information or no DM is available, a MOP is solved to 

obtain a Pareto optimal solution that is closer to the ideal point. One of the most commonly used methods that belong 

to no-preference method is the method of global criterion /7/. In the method of global criterion, the MOP is converted 

in to the following single objective optimization problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑|𝑓𝑖(𝒙) − 𝑧𝑖
𝑖𝑑𝑒𝑎𝑙|

𝑝
𝑘

𝑖=1

)1/𝑝 

           subject to 𝒙 ∈ 𝑆. 

In the above single objective problem, any 𝑝 ≤ ∞ can be used. Different Pareto optimal solutions can be obtained by 

changing the value of p, as the closeness measure to the ideal point is varied /1/. 

3.2 A posteriori methods 

As the name suggests in a posteriori methods, the DM is involved only after the MOP is solved. Here solving a MOP 

means finding a representative set of Pareto optimal solutions or the Pareto optimal front. The DM investigates the 

Pareto optimal front presented to her/him and then chooses a solution from them as her/his preferred Pareto optimal 

solution. Different methods are employed to obtain the representative Pareto optimal front, i.e. weighted sum method 

/8/, epsilon constraint method /9/, EMO algorithms /2/ etc. Among these, EMO algorithms are commonly used. 

Evolutionary multiobjective algorithms are based on nature inspired algorithms and involve a population of solutions 

that are evolved over several iterations or generations to finally obtain a representative Pareto optimal front. There 

are at least two main goals in EMO, to obtain a set of solutions as close as possible to the Pareto optimal front and to 

find a set of diverse solutions that represent the entire Pareto optimal front. In the above goal closeness is relevant as 

EMO algorithms have no theoretical convergence proof to optimal solutions. The main convergence criterion that is 

employed is maximum number of function evaluations. In EMO algorithms, a representative solution is called an 

individual, a set of individuals is called a population and an iteration of an EMO algorithm is called a generation. 

Typically in an EMO algorithm, a set of new individuals are randomly created. Subsequently, new solutions are 

created using crossover and mutation operators /2/ commonly called reproduction operators. Next a selection 

operator is applied to prefer good solutions over bad solutions. Good solutions are usually those that have better 

function values as compared to other solutions and/or can help in maintaining the diversity of solutions (second goal 

of EMO). This combination of crossover, mutation and selection operation forms one generation of an EMO 

algorithm. Several such generations are carried out until a pre-fixed termination criterion is met.  Finally the resulting 

population (which constitutes solutions that are equally good) is declared to be the representative Pareto optimal 

front.  

In EMO literature there are several EMO algorithms and are often classified in to three main groups, i.e. aggregation 

based, dominance based and performance indicator based algorithms. Aggregation based algorithms decompose 

MOP into a number of single objective sub-problems and subsequently solve them simultaneously. One of the 

commonly used aggregation based EMO algorithm is MOEA/D /10/. Dominance based algorithms are the most 

common type of EMO algorithms in the literature and are based on the Pareto domance based evaluation /2/ of 

individuals. A commonly used dominance based EMO algorithm is NSGA-II /11/. Finally, indicator based 

algorithms /12/ use an indicator function, e.g. hypervolume (a measure of the area dominated by the Pareto optimal 

front) to gauge the quality of the population in an EMO algorithm. 

Over the past few decades EMO algorithms have been increasingly used in practice due to advantages such as, a set 

of representative Pareto optimal solutions can be obtained in a single run, multiple local, discrete, and nonconvex 



Pareto optimal fronts and different types of variables, objective functions, and constraints can be easily handled. 

However they are also equally criticized for their lack of convergence proof, being computationally very expensive 

and the need to set a number of algorithm parameters such population size etc. 

3.3 A Priori methods 

In a priori methods, a DM provides her/his preference information beforehand. This preference information is 

considered to usually formulate a single objective optimization problem, which is subsequently solved to obtain 

preferred Pareto optimal solutions to the DM. Although this method looks attractive, in practice it is often difficult 

for a DM to know a priori what he wishes to achieve. Thus the preference information provided by the DM can be 

too optimistic or pessimistic. Lexicographic ordering /13/ and goal programming /14/ are commonly used a priori 

methods. 

In lexicographic ordering, the DM ranks the objective functions in the order of importance. Firstly the most 

important objective function is optimized subject to constraints. Next, if the solution to this solved problem is not 

unique, then the second objective function is optimized subject to the constraint that the objective function value of 

the most important objective function is no less than the optimal value. This procedure continues until we obtain a 

unique solution. In goal programming the DM provides a goal in terms of the value of objective function s(he) 

wishes to achieve. Subsequently a solution is obtained by minimizing the deviation between the feasible objective 

function value and the specified goals. 

3.4 Interactive methods 

Interactive methods are the most DM intensive. Here the DM articulates her/his preference information iteratively 

and thus directs the MOP solution process progressively. A typical interactive method starts with showing the DM a 

starting Pareto optimal solution with the ideal and nadir points. Next, the DM provides her/his preference 

information, which is subsequently used by the interactive method to generate one or more Pareto optimal solutions. 

The DM again investigates the solutions provided to her/him and chooses one or more solutions that s(he) likes and 

provides new preference information. The procedure of expressing preference information and subsequently finding 

new solutions corresponding to the preference information continues until the DM has found her/his preferred Pareto 

optimal solutions and does not wish to continue. 

Literature has a plethora of interactive methods proposed in the literature, such as STEP method /15/, NIMBUS 

method /16/ etc. NIMBUS method proposed by Miettinen and Mäkelä /16/ is perhaps one of the well know 

interactive methods available in the literature. It closely follows the steps involved in a typical interactive method 

mentioned above. When the DM is expressing her/his preference information, s(he) classifies the objectives in to one 

of five class indicating how the current solution can be improved, i.e. the value of objective function a) have to be 

improved from the current value, b) have to be improved up to a specified value by the DM, c) is acceptable and 

must stay the same, d) have to impaired up to specified value by the DM and e) can vary freely temporarily. This 

information is used by the NIMBUS method to formulate a single objective function and a new Pareto optimal 

solution is obtained. Further details about the method can be obtained in /16/. Usually in engineering design the 

objective and constraint functions are computationally expensive to evaluate, this limits the applicability of 

interactive methods in such cases. As the DM has to wait a long period of time to investigate even one solution. 

4 Conclusions 

In this paper, we present a brief overview of the methods available in the literature. Classifications of the methods 

are presented and a brief explanation of at least one method is presented. This could provide an overview to 

researchers and practitioners about the field of multiobjective optimization as a whole and thereby promote its 

utilization among the industries. Typically only multiobjective optimization problems with only a couple of 

objectives are considered in industries, in such a case the use of EMO algorithms are common in the literature. This 



is mainly due to the ease of visualization of the Pareto optimal front. However, if several objectives are considered it 

is advisable to use interactive methods, as the DM can iteratively present his preferences and learn about the problem 

before converging to her/his preferred Pareto optimal solution. 
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