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ABSTRACT 

In this paper, guidelines for designing inputs for control-oriented identification of multivariable systems are given. 

The information needed for design of inputs such as double rectangular pulses, pseudo-random sequences (PRBS), 

and multi-sinusoidal signals can be obtained from a simple step test. Such a step test also gives accurate 

information about the directionality properties of the system. It is shown how this information can be used to 

design input signals as well as directional inputs that explicitly excite the various gain directions of the system. By 

such excitations, small gains and fast dynamics can be better identified than by standard, non-directional, methods. 

If the identified model is to be used for control design, it is important that such properties are included in the 

model. The design techniques are illustrated by simulations on an ill-conditioned, 3-input, 3-output system. In 

addition to output noise, low-frequency input disturbances are added to make the identification task realistic with 

regard to real-world applications. 

1 INTRODUCTION 

A successful system identification requires data that are truly representative of the system to be identified. To 

obtain such data, the experiment design for the identification is of utmost importance. In this respect, multiple-

input multiple-output (MIMO) systems are much more challenging than single-input single-output (SISO) 

systems. 

One approach to MIMO system identification is to perturb on input after another and to identify each input-output 

dynamics separately as a set of SISO models /1/. All outputs can also be considered simultaneously, resulting in a 

SIMO (single-input, multiple-output) approach. However, it is clear that parameters common to more than one 

SISO or SIMO subsystem will then be identified as being different, which generally makes the order of the overall 

model higher than the order of the system. 

In order to minimize the experiment time, it is beneficial to perturb all inputs simultaneously. This puts high 

demands on the experiment design. The standard approach is to use uncorrelated signals, e.g., pseudo-random 

binary sequences (PRBS), for the various inputs. The identification task could then be handled as a set of MISO 

(multiple-input, single-output) problems by treating each output separately. However, this approach has similar 

drawbacks as the SIMO approach. 

If the identified model is to be used for simulation, the above approaches are probably adequate. However, for 

prediction and control applications, it is essential that all outputs are treated simultaneously /2/. The reason is that 

correlations between the outputs (i.e., “directionality”) are not accounted for by a multi-MISO approach /3/. Thus, 

a MIMO system should be identified as a full MIMO system with all inputs and all outputs handled simultaneously. 

The general view is that the inputs should then be uncorrelated to ensure identifiability. 

In this paper, guidelines are given for design of identification experiments aimed at fulfilling the above mentioned 

requirements for MIMO system identification. Special emphasis is put on control-oriented aspects. If a model is 

used for control design, integral controllability requires that the directionality properties or the model are close to 

those of the real system. 



The design techniques are illustrated by realistic simulations of an ill-conditioned 3 3  system. Previously, a 

similar study of a 2 2  system with real data from a pilot-scale distillation column was made /4/. A simulated 

4 4  system has also been studied /5/. 

2 CONTROL-ORIENTED INPUT DESIGNS 

2.1 Integral Controllability 

A multivariable controller with integral action, such as a model-predictive controller (MPC), can stabilize two 

systems having gain matrices K  and K̂ , respectively, if and only if /6, 3/ 

 1ˆRe[ ( )] 0i KK   , i ,  (1) 

where ( )i   is the ith eigenvalue of ( ) . If the system to be controlled has the gain matrix K  and the model used 

for controller design has the gain matrix K̂ , (1) must obviously hold. A necessary condition for this is that the 

determinants of K  and K̂  have the same signs. 

An ill-conditioned system is a MIMO system whose gain matrix has a “high” condition number /7/. Such a matrix 

is nearly singular, which means that small errors in K̂  may give large errors in 1K̂ . This may easily cause (1) to 

be violated. However, if the directions of corresponding column vectors in K  and K̂  are reasonably close to each 

other, even large errors in the magnitudes of the column vectors can be tolerated without (1) being violated. Thus, 

it is desirable that possible errors in K̂  are closely aligned with the column vectors of K . 

In system identification, the distribution of errors in K̂  primarily depends on the quality of the data. Besides 

reliable measurements, the only way of ensuring good data is the experiment design, i.e., the applied inputs in the 

identification experiments. As a minimum, a control-oriented experiment design aims at producing data that 

enables (1) to be satisfied. 

It has been recognized that proper excitation of the so-called gain directions of the system is a good way of 

generating data for a control-oriented identification /3/. Although the design is based on steady-state considerations 

only, there are many ways of implementing such a procedure /4/. The fact that the slow and fast dynamics of a 

system tend to be well separated among the gain directions makes the method very effective for identification of 

dynamics, too /8/. 

2.2 Directional Input Design 

Consider a system with an input vector u , an output vector y , and a non-singular steady-state gain matrix K  of 

size n n . A singular value decomposition (SVD) of K  yields 

 Ty Ku W V u   , (2) 

where u  and y  denote steady-state values. V  and W  are orthogonal matrices and   is a diagonal matrix of 

singular values, i , 1, ,i n , 1 2 0n      . The orthogonality means that TV V I  and TW W I . 

A new signal is defined by 

 TV u   . (3) 

The steady-state output is then given by 

 y W . (4) 

Because W  is given by the SVD, i  (i.e., the ith component of  ) will excite only the output direction associated 

with the singular value i  resulting in an output with the steady-state magnitude 2|| || | |iy  . 

Of course,   cannot be applied directly as an input, but it can be realized (approximatively) by the input 

 1ˆ ˆu V   , (5) 

where V̂  and ̂  are estimates of V  and  , respectively, determined from an estimate K̂  of K . If T ˆV V I , 



substitution of (4) into (2) yields 
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

   , (6) 

where iw  is the ith column of W .  Although the directional design is based on steady-state considerations, (5) 

shows how the input u  should be varied in time when the design signal   varies in time. 

There are numerous design options for  . It is possible to excite one gain direction (and the associated dynamics) 

at a time by perturbing one component i  at a time. Equation (6) shows that an accurate estimate of i  is then not 

that important as the estimate ˆi  only affects the magnitude of the steady-state output vector y . It is also possible 

to excite all gain directions simultaneously by perturbing all components of   simultaneously. The perturbations 

i  should then be uncorrelated with each other to make the various gain directions uncorrelated and thus 

identifiable. Note that this is different from applying uncorrelated inputs iu  as perturbations. 

Independently of the above choice, i  can be any type of excitation signal normally used as input in identification. 

It can, e.g., be a (series of) step change(s), a double rectangular pulse (DRP), a pseudo-random binary sequence 

(PRBS), or a multi-sinusoidal signal (MSS). The signals for the various directions can be designed with dynamics 

in mind to excite different frequency ranges. In principle, it is even possible to use different types of signals for 

the various gain directions. 

2.3 Test Signal Design 

A proper design of test signal requires some knowledge of the frequency range of interest. This information may 

be obtained from an initial step test. Such a test will also give an estimate of the gain matrix needed for a directional 

input design.  

In the following, design principles for a DRP, a PRBS, and a MSS are given. They are mainly based on 

specifications (estimates) of the smallest time constant of interest, LT , and the largest time constant of interest, 

HT . The signal amplitude a  is left as a tuning parameter for desired output magnitudes. 

2.3.1 Double rectangular pulse 

A DRP is composed of a rectangular pulse with height a  and duration swT  directly followed by a similar pulse 

with height a . The DRP excites almost all frequencies of a system, with the maximum excitation at a higher 

frequency than the low frequencies mainly excited by a step signal. 

There seems to be no readily available design rules for the DRP in the open literature. The signal properties could 

be analysed via the Fourier transform to obtain some guidelines, but here we suggest the simple choice 

 sw MT T , (7) 

where MT  denotes the main time constant of interest. This approximately corresponds to a sine wave with 

the period MT . 

After the DRP, the signal, denoted drp ( )u t , remains at 0 for the remaining experiment time. For directional inputs, 

one such signal is used to excite one gain direction, suitably time-shifted versions of the signal are used for other 

gain directions. Thus, one direction at a time is excited. Let the time delay chosen for direction “ i ” be i , and the 

amplitude chosen to properly excite this direction be ia . Component i  of the design signal for directional inputs 

then becomes 

 drp ( )i i ia u t   , 1, ,i n . (8) 

The full design signal   is applied to the system by (5). 



2.3.2 Pseudo-random binary sequence 

A PRBS is a deterministic binary signal with a sequence length N . Repeated sequences give a periodic signal. The 

signal switches between the levels a  and a  with a minimum switching time swT  such that the time between 

switches is some multiple of swT . By design, the sample statistics of the signal accurately mimic those of white 

noise within the sequence length. 

There are many ways of implementing a PRBS. The most common version is a maximum-length PRBS, for which 

the period length satisfies 

 r2 1
n

N   ,  (9) 

where rn  is a positive integer, the so-called register length. With N  specified, the switching times can be 

calculated by a simple formula /2/, but here, MATLAB’s System Identification Toolbox /9/ will be used. 

The design principles are as follows. If the highest angular frequency of interest is max  with the period length  

LT , swT  should be selected as /10/ 

 1
sw max L2.5 0.4T T  .  (10) 

The frequency max  can often be taken as the bandwidth of the system, or of the closed-loop system to be designed. 

The total period length swNT  determines the low-frequency excitation. It has been suggested to select swNT  as 

the 99 % settling time of a step response /1/. If the largest time constant of interest is HT , the recommendation is 

 H sw/N T T . (11) 

where   is chosen according to the desired settling time. For a 95 % settling time, 3  ; for 99 %, 4.6  . 

Note however, that N  has to be selected to satisfy (9). Compromises might also be needed to keep the experiment 

length swNT , or some multiple of it, sufficiently short. 

The minimum switching time should not be taken as the sampling time. In fact, it is recommended /2/ that the 

sampling time sT  be selected as 

 s sw0.25T T . (12) 

Together with (10), this corresponds to 10 samples per LT . 

For directional inputs, the same PRBS, suitably time-shifted to make them uncorrelated, can be used for all gain 

directions unless there is a reason to design them for different dynamics. If the PRBS signal is denoted prbs ( )u t , 

 prbs ( )i i ia u t   , 1, ,i n . (13) 

Usually, the time shifts are selected as sw ( 1) /i NT i n   , 1, ,i n . This is the choice used in the Identification 

Toolbox. However, for 3n  , other time shifts might yield smaller correlations between the signals. 

2.3.3 Multi-sinusoidal signal 

A MSS has the form 

 
s

mss

1

( ) cos( )

n

k k

k

u t a t 


  , (14) 

where sn  is the number of sinusoids, all (in this case) with the same amplitude a . The individual sinusoids have 

the frequency k  and phase shift k , s1, ,k n . A so-called Schroeder multi-sine uses the phase shifts /10/ 

 s( 1) /k k k n    . (15) 

These phase shifts prevent the amplitudes of the sinusoids to add up excessively in the summation. 

The remaining user choices are sn  and k , s1, ,k n .  Assuming 
s1 2 n     , 1  is the lowest and 



sn  is the highest excitation frequency. The obvious choices are 

 1
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T


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Usually, equally spaced frequencies are desired. This requires 

 s H L/n T T . (17) 

The frequencies are then calculated by 

  
s L

2
k

k

n T


  ,  s1, ,k n . (18) 

This way of formulating the calculation ensures that the highest frequency is “exact”, the lowest frequency may 

be approximate depending on the approximation in (17). 

For directional inputs,  

 mss ( )i i ia u t   , 1, ,i n . (19) 

The time shifts i  to make i , 1, ,i n , uncorrelated,  have to be found by analysing (13). 

3 EXPERIMENTS 

The presented input design methods are illustrated by realistic simulations of a 3 3  system. 

3.1 Experimental Setup 

The system used for this case study has the transfer function 
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. (20) 

The system was originally presented by Vasnani /11/, but an input and an output have been rescaled to make the 

system ill-conditioned. The gains and time constants (dimensionless numbers are used) have been rounded to the 

nearest integer. The condition number of the system is now 30. A SVD of the gain matrix gives 

 

114 0 0

0 74.8 0

0 0 3.78

 
 

 
 
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, 
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0.838 0.532 0.125

V
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 

 
 
  

. (21) 

Note that the outputs should be scaled to make equal numerical changes equally significant. Only then can norm-

based measures of the output vector have relevance. The same applies to the inputs, if they are characterized by 

their norm. It is assumed that the signals now fulfil these requirements. 

If the system is free of unmodelled disturbances, it is trivial to identify an exact model of the system with any 

reasonable input design, even simple step tests. White output noise will only marginally affect the estimated 

parameter values if the signal-to-noise ratio is reasonable good. For a more realistic simulation, it is necessary to 

add coloured noise, low-frequency disturbances, or nonlinearities. In this case, low- frequency, Schroeder multi-

sines ( 2 / 2550k k  , 1,2,3k  ; 1 0.05a  , 2 3 0.005a a  ) were added to the inputs. White noise with 

(approximate) covariance 0.4 was added to all outputs. 

Amplitudes of individual input signals ( iu  or i , 1,2,3i  ) were adjusted to render output vectors of 

approximately equal 2-norm and jointly scaled further to maximize outputs in the range ( 20,20) . In practice, 

this can hardly be done very precisely, but here the objective was to make comparisons of different input designs 



fair. For the same reason, the true model parameters were used as initial estimates in all identifications (but auto-

selected values seemed to work equally well). Otherwise, the system was assumed to be unknown. MATLAB’s 

System Identification Toolbox /9/ was used for all identifications. 

3.2 Initial Step Test 

A simple step test was performed to gain basic information about the system. The inputs were changed one at a 

time well separated to allow the system to reach a near steady state between changes. The input having the fastest 

dynamics was changed first, slowest dynamics last, to minimize the experiment duration. The step test is shown 

in Figure 1. 

The identified model is shown in Table 1. The estimated gains 12K̂ , 13K̂ , and 23K̂  differ considerably from the 

true ones and 13K̂  even has the wrong sign. The condition number is 46 which is 50 % higher than the true one.  

A SVD of the gain matrix gives 
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.  (22) 

In spite of all this, the gain directions iv , 1,2,3i  , are very close to the true ones.  This ̂  and V̂  are used in the 

design of directional input. 

3.3 Double Rectangular Pulse Experiment 

The time constants of the estimated model vary between 0 and 638, but the extreme values, which differ 

considerably from the true ones, are associated with the very erroneous gains. However, in a real situation, this 

will not be known. 

If the main time constant of interest is chosen as 200MT  , the switching time for a DRP becomes sw 200T  . 

Figure 2 shows a directional DRP experiment, where the inputs are calculated by (8) and (5). The identified model 

is shown in Table 1. 

3.4 PRBS Experiments  

The DRP experiment might be expected to give a better model than the step test. However, the directionality data 

and the time constants from the step test model will be used to allow a fair comparison between the experiment 

designs. 

If the almost zero time constants are not taken into account, the step test model suggests L 25T  , which yields 

sw 10T   by (10). The sampling time according to (12) is rounded to s 2T  . Choosing H 500T   and a 99% 

settling time ( 4.6  ), (11) with the constraint (9), gives 255N  . 

The command idinput in the System Identification Toolbox was used to generate a PRBS with 255N  . The 

command can also generate time-shifted  PRBS signals,  but it was found that adding three such signals produced  

 

Figure 1. Initial step test. 

 

Figure 2. Directional DRP experiment. 



 

a non-symmetrical signal with no values reaching 3a  or 3a . By using other time shifts ( 2 91   and 3 179  ), 

uncorrelated sequences were obtained that gave a symmetrical signal reaching  the theoretical limits when added. 

Figure 3 shows an experiment with uncorrelated PRBS inputs. Figure 4 shows an experiment with directional 

PRBS inputs calculated by (13) and (5). The obtained models are given in Table 1. 

3.5 Multi-Sine Experiments 

For the multi-sine design, L 25T  , H 500T  , and 4.6   are used in accordance with the PRBS design. 

Equation (17) gives s 92n  , which yields the period length s L 2300n T  . This is slightly shorter than the period 

length sw 2550NT   used for the PRBS design. To get the same period length for both designs, sn  is increased to 

102. The frequencies are then calculated by (18) with s L 2550n T  . For uncorrelated inputs, the time shifts 

2 800   and 3 1570   were used. 

Figure 5 shows an experiment with uncorrelated Schroeder multi-sine inputs calculated by (14), (15), and (18). 

Figure 6 shows an experiment with directional inputs calculated by (19) and (5). 

4 RESULTS 

4.1 Transfer Functions 

The transfer function matrices of the estimated models are presented in Table 1. 

It is clear that the transfer functions 12G , 13G , and 23G  are very troublesome. Only the directional DRP and PRBS 

experiments gave reasonable estimates of these transfer functions. For the other transfer functions, there is not 

much difference between uncorrelated and directional excitations. The result of the multi-sinusoidal excitations is 

not that good. 

 

Figure 3. Uncorrelated PRBS experiment. 

 

Figure 4. Directional PRBS experiment. 

 

Figure 5. Uncorrelated multi-sine experiment. 

 

Figure 6. Directional multi-sine experiment. 



Table 1. Estimated transfer functions. 

Exp. Uncorrelated Directional 
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4.2 Directionality Properties  

The directionality properties of the estimated gain matrices are illustrated in Table 2. 

It shows that the directionality properties of the gain matrix estimated from a simple step test are surprisingly close 

to those of the true system. The multi-sinusoidal experiments did not perform well in this respect, especially not 

the one with directional excitation. There is not much difference between uncorrelated and directional PRBS 

excitation. 

Table 2. Directionality properties of estimated gain matrices. 

Exp. Uncorrelated Directional 
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4.3 Cross Validations 

Any measure of the model fit with the experimental data has not been presented, because such a measure is not 

very useful. If the excitation of the system is not adequate, it tends to be easier to fit a model well to the data than 

if the system had been more heavily excited. Even if the fit is good, the obtained model is not likely to be a good 

representation of the system in such a case. 

A better quantification of the model quality is 

obtained by cross validations. The idea is to 

check the performance of the model on other data 

than the data to which the model was fitted. In 

this case, it is convenient to use data from the 

other identification experiments to validate a 

model. 

Table 3 shows average prediction errors of the 

various models for each output iy , and overall,  

when applied to all identification experiments. 

The average prediction errors of the true system 

has also been included. 

It is surely surprising that the average prediction errors of the true model are so large. This reflects the severity of 

the included disturbances although they are hardly noticed in the outputs. The average prediction errors of all 

estimated models are quite close to the prediction errors of the true model. Thus, the models should probably not 

be ranked based on this cross validation. It should also be noted that this cross validation is not a control-oriented 

validation. 

5 CONCLUSIONS 

The design of experiments for identification of multivariable systems has been studied. Design guidelines for 

inputs such as double rectangular pulses (DRP), pseudo-random binary sequences (PRBS), and multi-sinusoidal 

signals (MSS) were given. These can be applied directly to the system inputs, or they can be used to explicitly 

excite the various gain directions of a system. By doing that, reliable information about small gains and fast 

dynamics are easier to obtain than by traditional methods. The low-gain properties are important when a model is 

used for controller design, less so if the model is used for simulation. In this study, the estimated models were not 

tested for their control-oriented properties. 
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Table 3. Average prediction errors (%) by cross validation. 

Model 1y  2y  3y  Overall 

True 15.11 15.93 14.31 15.12 

Step 16.09 17.19 15.35 16.21 

DRP dir. 16.50 20.83 17.11 18.15 

PRBS unc. 15.96 16.12 16.77 16.28 

PRBS dir. 16.63 18.23 20.37 18.41 

MSS unc. 16.88 18.11 16.43 17.14 

MSS dir. 17.23 20.79 14.68 17.56 

 


