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Abstract

Multiple-evaporator/vapor compression cooling systems are used for air conditioning in multi-zone buildings with a refrigerant
supplied to each individual zone-evaporator from a central compressor/condenser unit. Such systems, incorporating controlled
electronic expansion valves associated to each evaporator and a variable-speed compressor, allow the overall system to be able
to operate in different modes in order to achieve cooling requirements and energy efficiency. Switching between the different
modes associated with the cooling demands might give rise to switching transients. Such transients are likely to negatively
impact the control performance and consequently the energy efficiency of the overall system. In this paper, a novel technique
is proposed for dealing with such transients when switching between control modes in a multiple-evaporator/vapor compression
cooling system in order to ensure that the control performance undergoes no degradation. The proposed approach is purely a
“data-driven” technique using only the plant input/output measurements available in real-time. A simulated experiment with a
two-evaporator/vapor compression cooling system shows that the proposed algorithm can achieve a quite satisfactory overall
performance under mode switching.

I. INTRODUCTION

An emerging building space air conditioning technology is the variable refrigerant flow (VRF) technology based on the
classical vapor compression cycle [1], [3], [6]. The vapor compression cooling cycle is a simple four stage thermodynamics
process that cools a room or an enclosed space to a temperature lower than the surroundings.
Strong requirements on energy saving and the growing end-user demand for air conditioning system that has independent units
serving different zones in a building makes multi-evaporator variable refrigerant flow system the ideal candidate for many
applications such as commercial buildings, offices and hotels. A multi-evaporator VRF system, also called multi-split VRF
system, is a cooling system consisting of one outdoor unit, i.e. the condenser, and multiple indoor units, i.e. the evaporators.
Such systems are best suited for variable thermal load applications since their design is based on inverter technology, i.e. a
variable frequency drive, which adapts the speed of the compressor to the varying thermal loads in the building. Moreover, a
pulse modulating valve called an electronic expansion valve (EEV), in each unit controls the exact amount of refrigerant to
be injected into each indoor unit in order to maintain the zone air temperature at the set-point. In addition, such systems are
instrumented with temperature sensors and pressure sensor which permanently monitor the amount of superheat across indoor
unit evaporators, hereby ensuring a safe operation of the system. The VRF system can efficiently distribute cooling capacity to
keep up with changing loads with respect to the time of the day, room occupancy, solar loads, etc. [1] The VRF system might,
therefore, operates in different modes, such as, for example, the modes in which all the indoor units are operating or modes in
which selected indoor units are turned off. For an efficient operation of the overall system, the control laws should be adapted
to the different cooling modes. A typical approach to such control law adaptation at run time is the off-line design of a bank
of controllers where each controller of the bank is associated to a mode of the system. When all these controllers are packed
into a control processor, controller switching is used to adapt the controller to changing operating points. Clearly, some way of
switching between the controller as the system evolves is required. This issue of transferring control authority between different
controllers is not a trivial task, and due to its practical importance, it has received a lot of attention from the research community
over several years, see e.g. [7], [11] and references therein. Upon switching, the control signal is imposed by a new controller
and some kind of coherence must be enforced between the output trajectory of the new controller and that of the former
controller in order to ensure that no undesirable transient takes place which in the case of the VRF air-conditioning system
may negatively impact the control performance (as evidenced e.g. by the comfort of the users in the rooms) and also the energy
efficiency of the overall system. The avoidance of these transients upon switching is commonly known as the bumpless transfer
problem. The benefits of using a VRF air conditioning system as evidenced by its adaptation to various capacity indoor units
with added value with regards to comfort levels and reduced power consumption can be severely jeopardized if control mode
switching are not taken care of. Unfortunately, there has been little work on managing mode-switching transients in such air-
conditioning systems, except the work recently reported in [8], [9]. In this work concerning a dual-evaporator air conditioning
system, the authors present the design and application of a model-based compensator for dealing with mode switching similar
to the model-based anti-windup compensator derived in [7]. A shortcoming of this approach is clearly the fact that the switching
transients management relies on a known model of the system at switching time which might not be available as it is usually
the case in practical applications.

In this paper, we propose a new bumpless switching algorithm for the control of a VRF system for a two-zone building
which gets rid off of the above mentioned modeling issue. The novelty of this algorithm lies in the fact that we do not use any
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a priori knowledge of the model of the plant in real-time. We use the mathematical framework of behavioral theory to design
the bumpless switching mechanism. The paper is organized as follows. Section 2 gives the basics of the behavioral approach
needed throughout. The data-driven bumpless switching approach is developed in section 3. Finally, section 4 presents the
two-zone VRF benchmark system and its control modes with the simulation of the data-driven bumpless switching mechanism
to illustrate the features of the algorithm.

II. PRELIMINARIES ON FEEDBACK IN THE BEHAVIORAL FRAMEWORK

In the behavioral setting, feedback is viewed as the interconnection of two dynamical systems, namely the plant and the
controller. A Linear Time-Invariant (LTI) dynamical system Σ is described by a triple Σ = (T,S,B) where T ⊆ R is the time
axis, S ⊆ Rs is the signal space, with Rs denoting the s-dimensional real Euclidean vector space over the field of real numbers
R, and B ⊆ ST is the behavior. The set S is the space in which the system variables take on their values and the behavior B
is a family of S-valued time trajectories, where a trajectory is a function s : T → S, t 7→ s(t) and s denotes the number of
components in s. Let S(ξ) ∈ R•×s[ξ], and consider the following system of constant coefficient differential equations

S

(
d

dt

)
s = 0. (1)

where R•×s[ξ] is the set of polynomial matrices with indeterminate ξ having an unspecified number of rows (of course, finite)
and s number of columns. Then the behavior B is the set of solutions of the finite system (1) which is defined as

B = {s ∈ (Rs)T| equation (1) satisfies}.

Representation (1) is called a kernel representation of B and sometimes, we denote the behavior as B = ker(S( d
dt )).

The interconnection of two dynamical systems is often dealt in the so-called full interconnection in which all system variables
take part in the interconnection. Consider two dynamical systems Σ1 = (T,S,B1) and Σ2 = (T,S,B2) with the common time
axis T, and the common signal space S. The interconnection of Σ1 and Σ2 is defined by Σ1 ∧ Σ2 = (T,S,B1 ∩ B2), where
B1∩B2 = {s|s ∈ B1 and s ∈ B2}. Here, ∧ denotes the interconnection of two systems, while ∩ denotes the intersection of the
behaviors of the two systems. In terms of kernel representations, let Σ1 be described by R1(ξ)s = 0, and Σ2 by R2(ξ)s = 0.

Then, Σ1 ∧ Σ2 is described by
[
R1(ξ)
R2(ξ)

]
s = 0. In this way, a dynamical system imposes restrictions on another dynamical

system such that the interconnected system satisfies the laws of both systems.
Consider P denotes the behavior of the plant, and C denotes the behavior of the controller with system variable s =

(rT , yT , uT )T . In the sequel, we sometimes denote this column vector by s = col(r, y, u). Given their kernel representation,
these behaviors are defined as

P = {s ∈ (Rs)T|R(ξ)s = 0},C = {s ∈ (Rs)T|C(ξ)s = 0} (2)

The interconnection of P and C yields the controlled behavior K, which is defined as K =
{
s ∈ (Rs)T|s ∈ P and s ∈ C

}
. In

this case, we say that for the given P, K is implemented by C or “C implements K”. The following result from [13, Lemma 3.5]
gives the implementability condition on K.

Theorem 1: The behavior K is implementable w.r.t. P by the full interconnection if and only if K ⊂ P

Control problems are always specified by certain criterion, which single out specific sub-behaviors as desirable. Here, such
specification is defined in terms of the system variable, and we call it the desired behavior D ∈ (Rs)T. In terms of a kernel
representation, it is defined by D = ker(D(ξ)), where D(ξ) is a polynomial matrix. Therefore, the control problem turns into
synthesizing a controller C for the given P and D such that when it interconnects with the plant, the interconnected system
satisfies the desired behavior.

In our data-driven bumpless switching approach to be presented in the next section, we do not have any access to, or use of,
a priori plant parameters, i.e. the matrix R(ξ) is not available during the design of the bumpless mechanism. Precisely, our
interest lies in synthesizing this bumpless mechanism without using the polynomials matrix R(ξ). It is a fact that the given
desired behavior should be implementable otherwise no controller can achieve the desired specifications. So from theorem 1,
we should have the following implementability condition on D as D ⊂ P..

III. DATA-DRIVEN BUMPLESS SWITCHING ALGORITHM

A switched-mode control structure employing a set ofN controllers C = {C1,C2, ...,CN} is constructed where it is assumed
that in each plant mode, one of the controller makes the desired behavior D implementable when the pairing of the plant and
that controller is considered as a stand-alone feedback system. At run-time, a supervisor determines which controller must be
selected in the set C in order to achieve the desired behavior. Though the pairing of each controller with a corresponding plant
mode might be viewed as stand-alone feedback, the overall evolving system is actually an hybrid system. Throughout it is
assumed the controllers (possibly, in their kernel form) and the supervisor are given at the outset and our aim is to devise a
real-time mechanism which ensures that the overall hybrid system satisfies to the desired behavior at any time.
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Fig. 1. Switching a controller

From now on, we will make reference to a time-dependent subset of the behavior P. This time-dependent subset, denoted
as Pt

m, is characterized by the set of signals experimentally measured on the time interval (−∞, t] where t is the current time.
More precisely, let (um, ym) be the input/output (of the real plant) actually measured in an experimental setting, as e.g. in an
actual closed-loop setting, then this subset Pt

m of the behavior P is defined by

Pt
m =

{
s = (r, u, y) ∈ ST s.t.

(
u(τ)− um (τ)
y(τ)− ym(τ)

)
= 0 for all τ ∈ (−∞, t]} (3)

With this definition, it is clear that Pt
m ⊆ P for all t ∈ (−∞,∞) .

Consider the scenario illustrated in figure 1, where Cp is the past controller with which the measurement set Pt
m is formed

and a controller Cf, i.e. the future controller, is switched in the loop. It is well known that whenever an instantaneous switching
of a controller is performed in real-time at t = tinter, undesirable transients might appear in the closed-loop that significantly
deteriorates the control performance [4]. It is argued in [14] that the main cause behind the appearance of these undesirable
transients, called bumps, is the lack of dynamical consistency between the “state trajectory” of the controller Cf before and after
the switching or interconnection instant t = tinter. Our objective is therefore to switch Cf in the running closed-loop system
in a way such that the overall controlled behavior still satisfies the desired behavior. When controller switching is achieved in
this way, we qualify it as a bumpless switching. To make precise this notion, let Kpic and Kfic denote the past interconnected
system and the future interconnected system respectively and tinter is the time at which controller switching takes place,

Kpic = {(r, y, u)|(r, u, y) ∈ P and (r, y, u) ∈ Cp}∀t < tinter

Kfic = {(r, y, u)|(r, u, y) ∈ P and (r, y, u) ∈ Cf}∀t ≥ tinter.

Definition 1: The switching of controller Cf in the feedback loop with the running plant P is said to be bumpless whenever
Kfic ⊆ D.
Clearly, controller switching is bumpy if it leads to closed-loop signals which no longer belong to the desired behavior. The
next proposition, which is a main result of this paper, is of paramount importance and will be the basis for the derivation of the
algorithm in achieving bumpless switching.

Proposition 1: Let D be an implementable desired behavior and consider the controller switching scenario as depicted in
figure 1. Then, the switching of controller Cf in the closed-loop with the running plant P is bumpless if there exists a trajectory
r̃ such that s̃ = (r̃, um, ym) ∈ Pt

m ∩ Cf ⊆ D for all t < tinter.
Proof: Let sf be the trajectory of the closed-loop switched-mode system after tinter, i.e., after switching Cf in the loop.

Then, under the stated condition, the achievability of a real-time smooth interconnection of Cf with P at time tinter is trivially
equivalent to the fact that the following concatenated signal, denoted s, and defined by

s = s̃ �tinter sf ⇐⇒ s(t) =

{
s̃(t) t < tinter
sf(t) t ≥ tinter

(4)

should belongs to the desired behavior, i.e.,
D 3 s = s̃ �tinter sf (5)

Clearly, the membership relationship (5) implies sf ∈ D, which means that the controller switching is actually bumpless.
Remark 1: First, it is worth noticing that proposition 1 implicitly introduces a “virtual” behavior, i.e., a set of signals s̃ =

(r̃, um, ym) corresponding to a loop in which Cf and P are fictively connected before time tinter (though in reality P is connected
with Cp for all t < tinter). Second, the significance of proposition 1 is that in order to achieve bumpless switching when Cf will
be effectively switched in the loop for all t ≥ tinter, this virtual loop should already satisfies the desired behavior D.
In the proof of proposition 1, the membership relationship (5) is exhibited as the main requirement for achieving a real-time
smooth interconnection. Therefore, the question arises as: under what condition, the relationship (5) holds?

To answer this question, we need more information on the behavior of the system. Observe that, thanks to remark 1, the
trajectory (4) might be viewed as that of the closed-loop system consisting of Cf being constantly in the loop since ever and
forever. This trajectory is in fact splitted at t = tinter in two parts, that is, a past trajectory and a future trajectory. Although



these manifest trajectories may be the main signals of immediate interest, there may be additional independent variables in the
system which allow a more complete description of the behavior. In particular, for a future trajectory in the behavior D to be a
continuation of a past trajectory in D obviously would require some boundary conditions to be met at the splitting time. These
boundary conditions can be expressed through the aforementioned independent variables which are usually called the state of
the system. The manifest trajectories might therefore be explicitly parametrized with these new independent variables (i.e., the
state) so as to catch all the information about the past which are relevant to do a continuation of the trajectory in the future.
It can be proved that such a parametrization always exists [10]. Let us denote the state of the virtual closed-loop and future
behavior of the system respectively by ˜̀and `f and parametrize explicitly the manifest trajectory of the virtual closed-loop and
future manifest trajectory with respect to their states as s̃(˜̀) and sf(`f). The following lemma which is a direct consequence of
the property of the state answers the raised question above.

Lemma 1: Let the manifest trajectories s̃(˜̀) and sf(`f) be elements of the behavior D, then their concatenation at time
t = tinter also belongs to D if ˜̀(t−inter) = `f(t

+
inter).

As we are dealing with behaviors of controlled systems consisting in the interconnection of a plant P and a controller C, the
state ` of the controlled behavior P ∩ C is a vector which can be partitioned explicitly as ` =

[
(ζP)T (ζC)T

]T
where ζP, ζC

are respectively the states of the plant and the controller. Thanks to this partitioning, the state of the virtual closed-loop behavior
Pt
m ∩Cf for t ∈ (−∞, tinter) is written as ˜̀=

[
(ζ̃P)T (ζ̃)T

]T
and the state of the future behavior as `f =

[
(ζPf )T (ζf)

T
]T

for all t > tinter . Introduce the (past) state `p =
[
(ζPp )T (ζCp)T

]T
of the actual loop Pt

m ∩ Cp evolving on the time axis
(−∞, tinter), then clearly ζ̃P = ζPp . It is a well-known fact [2] that despite a possible discontinuity of the manifest variables
(attached to P) at the switching instant tinter, the state of the plant is continuous at t = tinter, i.e., ζPp (t−inter) = ζPf (t+inter)

which implies that ζ̃P(t−inter) = ζPf (t+inter). From the above, it turns out that the boundary condition ˜̀(t−inter) = `f(t
+
inter) in

lemma 1 is achieved if and only if ζ̃(t−inter) = ζf(t
+
inter). This means that the state of the to-be-switched controller Cf should

be initialized at the switching instant t = tinter with the value ζ̃(t−inter) of the state that controller Cf would have achieved, had
it been in the loop on the (past) time interval (−∞, tinter).

Next, the question arises of how to compute explicitly the state ζ of a controller when the controller is given by its kernel
representation as in (2). A general result, yielding an algorithm for computing the state parameterizing the manifest behavior of
a dynamical system from [12], is specialized here to a controller C by the following theorem.

Theorem 2: Given the manifest variable s ∈ ST , the following statements are equivalent:
1) The manifest variable s belongs to the controller behavior C, i.e. C( d

dt )s = 0
2) There exist an integer nC , a polynomial matrix χ ∈ RnC×s[ξ] and a state ζ such that ζ = χ( d

dt )s

Proof: See [12, Theorem 6.2].
Note that the polynomial matrix χ in theorem 2 can be obtained by reduction of the kernel representation C( d

dt )s = 0 to a
first-order representation. An efficient algorithm is proposed in [12, Algorithm 1-3] to compute the polynomial matrix χ using
iteratively the shift-and-cut operation(see [12, Definition 5.1]).

IV. BUMPLESS SWITCHING OF A TWO-ZONE VRF SYSTEM

A. Two-zone VRF benchmark description

The “physical” structure of a two-zone VRF system is depicted in figure 2.
The two-zone VRF system is a non-square multiple-input/multiple output system where the components of control vector

u =
[
u1 u2 u3

]T
are the two EEV openings EEV1 = u1 and EEV2 = u2 and the compressor speed ωc = u3.

The system outputs are the two superheat temperatures Ts = col(Ts1, Ts1) (i.e., temperatures measured at points s1 and
s2 respectively), the two evaporator temperatures Te = col(Te1, Te1) (i.e., temperatures measured at the entry e1 and e2 of
each evaporator), and two zone temperatures Tz = col(Tz1, Tz1). The controller structure of the two-zone system is basically
similar to that proposed in [8] and illustrated in figure 3, where blue line corresponds to the reference trajectories and green
line denotes the output trajectories of the plant. The feedback gain matrix Ke regulates the evaporator temperature Te to its
reference trajectory by using the compressor speed. Controllers Ks and Kz works under a master-slave arrangement which
regulates Tz according to the user’s setting, i.e. the reference trajectory Tz,ref . The master feedback loop with Kz produces a
reference superheat temperature trajectory Ts,ref to the slave feedback loop where Ks regulates Ts to its reference trajectory.

The prime aim of this control strategy is to regulate the cooling of two zones according to the user’s setting in which the
expansion valves play a key role, since they control the flow of refrigerant into the evaporator. The other two temperatures
Te and Ts are not strictly required to track the reference values from the perspective of cooling control. However, it is only
sufficient to ensure that they stay within a reasonable band. In order to achieve these objectives, the controllers Ke,Ks,Kz

can be synthesized either indirectly using the method presented in [8] or directly (i.e. as a pure data-driven controller) using
the method presented in [5]. It is worth recalling that in this paper, the interest lies in demonstrating the effectiveness of the
proposed bumpless switching algorithm instead of synthesizing the controllers.



Fig. 2. Two-zone variable refrigerant flow system

B. Simulations of the two-zone under mode-switching
In order to demonstrate the effectiveness of the novel bumpless switching algorithm, we consider two modes of operation for

the two-zone VRF system: Past mode in which only evaporator #1 is working, and future mode in which both evaporators are
ON. For both of these modes, we are provided at the outset with a set of controllers given by

Cp :



Ke =
[
55.7 0

]
Ks = ξ−1 × I2 ×

[
0.0211(ξ + 0.043) 0

0 0

]

Kz = ξ−1 × I2 ×

[
5(ξ + 0.0027) 0

0 0

] ,Cf :



Ke =
[
51.2676 54.5547

]
Ks = ξ−1 × I2

[
0.018(ξ + 0.029) 0

0 0.019(ξ + 0.02)

]

Kz = ξ−1 × I2 ×

[
5(ξ + 0.0027) 0

0 5(ξ + 0.0026)

]
(6)

where I2 is the identity matrix of order 2. During the control process, Evaporator #1 is always ON while Evaporator #2 is
turned ON for 1800 sec (i.e. tinter = 1800sec) and turned OFF later. The temperature setting for zone #1 is always equal to
27 0C. During the ON state, the corresponding Te,ref is set to 100C and Tz2,ref is set to 250C while during the OFF state,
the corresponding Te,ref and Tz2,ref are respectively set to 160C and 330C. The closed-loop responses are illustrated in figure
4. Observe that the temperature of zone 1 settles to the reference trajectory within 1000 sec while the temperature of zone 2
settles within 1800 sec. At time t = 1800sec, switching to another mode is demanded, so Tz2,ref and Te2,ref are reset to their
designated value. It is clear from the figures that in the direct switching, that is, when the state of the controller are not correctly
initialized at the switching instant, we notice a significant bump which is an undesirable transient in the output of a two zone
VRF system when it has already been settled.

Two-zone

VRF dynamics

Kz Ks

Ke

EEV

ωc

Tz

Ts

Te

Tz,ref

Te,ref

Control block

Fig. 3. Control strategy of the two-zone VRF system

V. CONCLUSIONS

A data-driven bumpless switching algorithm has been developed and implemented for managing the transients during mode
switching control of a two-zone VRF air-conditioning system. It is shown that the direct switching between the different modes
associated with the cooling demands gives rise to switching transients, which might negatively impact the indoor comfort
and the energy efficiency of the overall system. With the proposed bumpless switching algorithm, no transients occur in the
temperature of two zones. The novelty of this algorithm lies in its pure “data-driven” formulation that uses only the plant
input/output measurements available in real-time. Looking at the effectiveness of the demonstrated mechanism, it is worth
investigating in future the transient management under a series of mode switching control of a multi-zone VRF system.
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Fig. 4. Closed-loop responses: dash-dotted (green) line denotes the reference trajectory; solid (red) line denotes the bumpy output trajectories; dashed (blue)
denotes the bumpless output trajectories
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