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ABSTRACT 

In this paper, we introduce Regressive Principal Component Analysis (RPCA). RPCA combines two techniques: 

Principal Component Analysis (PCA) and regression which easy to implement. RPCA has many features like 

PCA and capable to capture the nonlinear data structure. The method is efficient to work with a data with a low 

degree of nonlinearity in automation control and computer graphics. 

 

1 INTRODUCTION 

 

The dimensionality reduction problem solves machine learning problems and helps to obtain accurate data 

analysis in regression and classification.  The dimensionality reduction is used for visualizing structure in data, 

denoising and extracting meaningful features.  

For feature extraction to represent a high-dimensional data in a low dimensional space principal component 

analysis (PCA) and nonlinear manifold learning techniques are utilized.  PCA is an efficient technique when the 

analysed variables have a Gaussian distribution and data structure is linear /3/. PCA is also capable to capture the 

nonlinear data structure and reduce data dimension. However, the number of components in this case should be 

larger than intrinsic dimensionality of data. This means that PCA non-optimally represents the nonlinear data. 

The manifold learning technique is used for reducing dimensionality in the case of nonlinear data structures. The 

manifold learning technique includes Locally-Linear Embedding (LLE), ISOMAP, autoassociative neural 

network, non-linear PCA, kernel PCA  and others /2, 5, 7, 10, 11/. The manifold learning techniques have 

drawbacks.  The techniques may not be robust in computing, may not converge, computationally demanding, 

may not work even with moderate scale data and work only with well-defined data structures because of 

sensitivity to noise. All these problems make the use of manifold learning techniques difficult. There is clearly a 

niche between these linear and nonlinear approaches. The technique keeping advantages of PCA and working 

with nonlinear data is desirable.  

Many image sets and videos (patient breath images, bird flying in the direction of a camera, and images of 

rotated object acquired by camera from different viewpoints) originally presented in high-dimensional space 

have a few degrees of freedom /9/. In automation, many mechanisms have a few degrees of freedom as well. 

Thus, the low dimensional subspaces can be useful in applications.  

In this paper, we introduce Regressive Principal Component Analysis (RPCA). RPCA has many features like 

PCA and capable to capture the nonlinear data structure. The method limitation is that it works with a data with a 

low degree of nonlinearity. In automation control, the nonlinearity related to friction effect or the value limiting 

devices are usually low degree. We study mostly low dimensional subspaces. We give analytical and neural 
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network implementation of RPCA. This study shows the wide range of the possible RPCA use with a different 

nonlinear data including the color data introduced earlier /4/. Our experiments are conducted with synthetic data, 

and data used in computer graphics and automation control.      

 

2 METHODOLOGY 

 

The proposed approach RPCA is based on concept of nested subspaces and uses two techniques: PCA and 

regression.  First, we use PCA to reduce data dimensionality to intermediate-dimension (first) subspace, i.e. 

lower dimension subspace preserving the data nonlinearity. Then, we find a mapping between the leading 

principal components (PC) to weak principal components related the subspace. The leading PCs are the second 

nested subspace. Finally, to represent a nonlinear data structure we retain only the leading PCs and mapping 

parameters. The method limitation is that it may work only with a low degree of nonlinearity when data, i.e. PCs 

exhibit one-to-one mapping. The difference between RPCA and manifold learning technique is that the leading 

PCs of RPCA are poor represent the intrinsic data dimension. However, in applications the RPCA efficiency 

may be close to manifold learning. For example in data compression, we may have one nonlinear component of 

manifold learning versus one equal size leading principal component of RPCA and mapping parameters, that is a 

rather small amount of data.  RPCA has not computation problems inherent to machine learning like non-robust 

computing, long computation time and sensitivity to noise. In addition, RPCA is capable to make not only 

forward data mapping but also the inverse mapping, that many manifold learning methods cannot provide. 

 

2.1 Generic RPCA 

 

 Assume that a centered data is presented by a matrix  𝑋 with a size 𝑛 × 𝑡, where 𝑛 is a number of 

variables and 𝑡 is a number of observations. We sequentially reduce the dimension calculating the first subspace, 

which dimension is 𝑑 ≤ 𝑛 and, then, the second subspace with dimension 𝑝 < 𝑑. For the first reduction, we use 

PCA based on singular-value decomposition (SVD) as follows: 

𝑋 = 𝑈𝑆𝑉𝑇 , 

where the columns of 𝑈  contain the eigenvectors of 𝑋𝑋𝑇 . We will use only the first 𝑑  eigenvectors 𝑈𝑑 

corresponding to the largest 𝑑 eigenvalues (singular values). Thus, data encoding is as follows: 

𝑌𝑑 = 𝑈𝑑
𝑇𝑋, 

where 𝑌𝑑 is a matrix with a size  𝑑 × 𝑡. Then, we select 𝑝 component among 𝑑 component of 𝑌𝑑 corresponding 

to the largest eigenvalues. The selected 𝑝  components represent the second subspace and utilized for 

approximation the rest non-selected components of 𝑌𝑑 . The matrix 𝑌𝑑  is comprised of two matrices: 𝑌𝑝  (the 

selected components) and the matrix 𝑌𝑑−𝑝 (the rest components). The approximation of 𝑌𝑑−𝑝 by 𝑌𝑝 is obtained 

using regression for which the regression function 𝑓() and the mapping parameters 𝐵 are defined. There are 

many regression techniques suitable in our case: Ordinary regression, bridge regression, multilayer perceptron 

regression, Gaussian process regression and radial basis function regression /2, 8/.  In summary for data 

reconstruction, we calculate the mean vector and the first 𝑑 eigenvectors, select the regression function and 

define its parameters.   

To reconstruct data, the regression is first used  
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�̂�𝑑−𝑝 = 𝑓(𝑌𝑝 , 𝐵). 

Then, we compose matrices �̂�𝑑 = [𝑌𝑝 , �̂�𝑑−𝑝]𝑇, and reconstruct the data 

�̂� = 𝑈𝑑 �̂�𝑑 . 

 

2.2 RPCA using multiple linear regression 

 

Multiple Linear Regression (MLR) /2/ is one of the simple and efficient way to use with RPCA. In this case  

𝑌𝑑−𝑝
𝑇 = 𝑌𝑝

𝑇𝐵 + 𝐸, 

where 𝑌𝑑−𝑝
𝑇  is a matrix which columns are output components or responses, 𝑌𝑝

𝑇  is a matrix which columns are 

input components used for approximation, 𝐵 is a matrix of regression coefficients the columns of which are 

regression vectors and 𝐸 is an error. 

The solution, i.e. the matrix 𝐵, is calculated as follows; 

 𝐵 = (𝑌𝑝𝑌𝑝
𝑇)𝑌𝑝𝑌𝑑−𝑝

𝑇 . 

Finally, the mapping is as follows: 

�̂�𝑑−𝑝
𝑇 = 𝑌𝑝

𝑇𝐵. 

If we want to approximate nonlinear data then we need to use a polynomial fit extending 𝑌𝑝
𝑇 . Let us consider an 

example related to computer graphics. The dichromatic reflection model is widely used to describe the color 

image regions with variable intensity but approximately constant hue /4/. The model represents the global 

nonlinear data using a piece-wise linear data structure. The two linear clusters (or data structures) are specular 

reflection and body reflection. The model suggests that the data in RGB space is span by two leading 

eigenvectors, i.e. the first subspace called the dichromatic plane, and two linear clusters locate in the dichromatic 

plane. For these two clusters RPCA uses the data projection on the first eigenvector to approximate the 

projection on the second eigenvector. RPCA replaces the piece-wise linear model with a nonlinear model /1/.  In 

this case we have 𝑛 = 3, 𝑑=2, and 𝑝 =1. 

Thus, the data encoding is 𝑌𝑑
𝑇 = [𝑦𝑝

𝑇 , 𝑦𝑑−𝑝
𝑇 ],  where columns of 𝑌𝑑

𝑇   𝑦𝑝
𝑇  and 𝑦𝑑−𝑝

𝑇  are data projections. The 

relationship between 𝑦𝑝
𝑇  and 𝑦𝑑−𝑝

𝑇  is nonlinear. To approximate 𝑦𝑑−𝑝
𝑇  using 𝑦𝑝

𝑇  we exploit regression. To capture 

nonlinearity, we use a nonlinear fit, i.e. polynomial extension 𝑌𝑝
𝑇 = [1, (𝑦𝑝

𝑇)
1

, (𝑦𝑝
𝑇)

2
, … , (𝑦𝑝

𝑇)𝑘]. Now we have to 

select the order of polynomial. The lower order may produce poor approximation while the higher order may 

lead to overfitting. The order 3-5 is suitable in this case. Thus, finally extended 𝑌𝑝
𝑇  is 

 𝑌𝑝
𝑇 = [1, (𝑦𝑝

𝑇)
1

, (𝑦𝑝
𝑇)

2
, (𝑦𝑝

𝑇)
3

], 

where 1 is a unit entry vector to provide a bias. 

 

2.3 Neural network RPCA 

 

Here we show a possible RPCA implementation using an autoassociative neural network (ANN). We utilize the 

multilayer perceptron (backpropagation algorithm). The network training include mapping the input data onto 

the same output data providing the minimum of sum-of-squares error (Fig. 1).  
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In similar example with the conventional autoassociative neural network the data is reduced to a nonlinear 

component /2/. In this case, to make this component nonlinear we have to introduce the addition layer. The 

additional layer locates between the input layer and the first layer and consists of two nonlinear neurons. The 

proposed autoassociative neural network is simply because it has not the layer with nonlinear neurons and the 

component (first neuron) is still linear (like PCA) (Figure 1).  The two hidden (nonlinear) neurons capture the 

nonlinearity when data is reconstructed. 

 

Figure 1.  Autoassociative neural network RPCA. The input 2D data is mapped onto the low-dimension space 

described by one linear component and, then, is reconstructed using two nonlinear neurons and two output linear 

neurons. 

 

Depending on data, we design the neural network determining the number of layers and the number of neurons 

in each layer. The given neural network stricture is for nonlinear 2D data (Figure 1). 

 

3 EXPERIMENTS 

 

We conducted several experiments with synthetic and real data. In all experiments, the polynomial of the third 

order was used to provide nonlinear fit. The first experiment was conducted with a neural network and toy data. 

The second and third experiments were conducted with the Helix and Hemisphere. In the fourth experiment, the 

image colorization algorithm was used. Finally, RPCA was tested with a control system. 

The first experiment relates to the autoassociative neural network described in Section 2.3 and utilized for the 

toy data (Figure 2). We use the uniformly distributed data 𝑥1in the range [0.0, 1.5] and 𝑥2 = 𝑥1
3. The Gaussian 

noise N (0.0, 0.072) was added to both components. Then, the data was rotated counter clockwise around the 

point (0.7, 0.7) by an angle 15 degrees. In this case, 𝑛 = 𝑑 = 2 and 𝑝 = 1. 

The reconstructed data correctly show the intrinsic dimension (Figure 2). This result is impossible to achieve 

using only regression because the mapping between variables is one-to-many. However, the nonlinearity is 

correctly reproduced using RPCA because the mapping between the first and second principal components is 

one-to-one. 

In the next experiment, we generated the Helix as follows. The source 𝑥1 has 50 evenly distributed points 

ranging from 0 to 2π. Then the z-axis is equated with the source, the x-axis is 𝑥2 = sin 𝑥1, and the y-axis is 

𝑥3 = cos 𝑥1(Figure 3a, solid line). The Gaussian noise N (0.0,0.052) was added to all components. In this case,  

𝑛 = 𝑑 = 3 and 𝑝 = 1. The RPCA data reconstruction is rather good (Figure 3a, dots). 
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In the third experiment, we designed the Hemisphere with a unit radius and center at the axis origin. We 

generated 32 evenly distributed points for 𝜃 in the range [−𝜋, 𝜋] and 16 evenly distributed points for 𝜑 in the  

 

Figure 2. Autoassociative neural network RPCA. The calculated subspace is shown by a solid curve. The 

original data is shown by dots.  

 

range [0, 𝜋/2]. Then the x, y and z-axis are as follows: 𝑥 = cos 𝜑 cos 𝜃, 𝑦 = cos 𝜑 sin 𝜃, and  𝑧 = sin 𝜑. For all 

trhee components the Gaussian noise was added N (0.0,0.032)  In this case, 𝑛 = 𝑑 = 3 and 𝑝 = 2. The data was 

successfully reconstructed using RPCA (Figure 3b).  

 

 

a)                                                                                         b) 

Figure 3. Reconstruction. a) Helix. The underlying subspace is shown by a solid line. The reconstructed 

subspace is shown by dots. b) Hemisphere. The underlying subspace is shown by a solid surface. The 

reconstructed subspace is shown by dots. The dots locate nearby with internal and external sides of the 

hemisphere surface. 

 

The fourth experiment relates to computer graphics using gray-level image colorization. The dichromatic 

reflection model was used /4/. In this case we have the following dimensionality: 𝑛 = 3, 𝑑 = 2 and 𝑝 = 1. The 
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gray-level image Apple has a size 300×200 pixels (Figure 4a). The colorization based on RPCA (Figure 4c) is 

superior to PCA (Figure 4b). The saturated color and highlight are visually better reproduced by RPCA. 

Finally, we conducted experiment with a task related to automation control where the controller is subject to 

saturation (Figure 5a) /6/. The equivalent state model for the plant is as follows: 

�̇�1 = 𝑥2, 

�̇�2 = −4𝑥2 + 2𝑢, 

 

where 𝑥1 and 𝑥2 are state variables: output/position and velocity, respectively, u is a control signal.  

a)                                             b)                                                      c) 

Figure 4.  Image colorization. a) Original gray-level image. b) Colorization using PCA. c) Colorization using 

RPCA. RPCA correctly captures the data nonlinearity and better reproduces saturated color and highlight than 

PCA. 

 

The controller is modeled using a piece-wise liner characteristic: 

 𝑢 = +𝑢𝑚 if 𝐾𝑜(𝑟 − 𝑥1) ≥  𝑢𝑚, 

 𝑢 = +𝑢𝑚 if 𝐾𝑜(𝑟 − 𝑥1) ≤ − 𝑢𝑚, 

or 𝑢 = 𝐾𝑜(𝑟 − 𝑥1) if 𝐾𝑜|𝑟 − 𝑥1| < 𝑢𝑚. 

We use the reference 𝑟(𝑡) = 8𝑢(𝑡), 𝐾𝑜 = 5 and 𝑢𝑚 = 5, where 𝑢(𝑡) is a unit step function. 

a)                                                                                              b) 

Figure 5.  Control system. a) System with limiting. b) Modeling the saturation characteristic. 

 

One way of solution could be to use three solutions related to linear regions. However, it is better to use one 

single solution based on global nonlinear characteristic. In addition, the smoothed characteristic close to reality is 

desirable /6/. To imitate measurements errors, we added Gaussian noise N (0.0,0.42) to the original piece-wise 

characteristic (Figure 5b). RPCA provides denoising and obtaining the smooth curve. The regression method 
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solves the same task using the nonlinear fit with a third order polynomial. In this case, the result is not so 

accurate in comparison with RPCA (Figure 6a). To solve the task with RPCA approximation we used the Matlab 

ode23 (Runga-Kutta) algorithm (Figure 6b). 

 

 

a)                                                                                              b) 

Figure 6.  Control system. a) RPCA approximation (thick solid line), underlying piece-wise linear characteristic 

(thin solid line) and regression based approximation (dash line). b) Step response for velocity and position. 

 

4 CONCLUSIONS 

 

We developed and completed the method RPCA for the data dimensionality reduction. RPCA is simple for 

implementation and based on PCA and linear regression. The proposed method can be easily modified to obtain 

desirable features utilizing different kinds of PCA (PCA, probabilistic PCA, Bayesian PCA and others) and 

regression (ordinary regression, bridge regression, kernel regression and others).  The method find the efficient 

solution for the data with a low degree of nonlinearity.  In our future work, we will modify the algorithm for the 

higher degree of data nonlinearity.   
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