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ABSTRACT 

 

Systems with multiple inputs and multiple (MIMO) outputs are more difficult to identify than systems with a single 

input and a single output (SISO) due to interactions between the variables. Surprisingly little is said about the 

experiment design for MIMO system identification in major textbooks on system identification. The most 

advanced advice is that the inputs should be perturbed simultaneously in an uncorrelated way. It has been noted 

that this kind of excitation tends to produce poor data for system identification if the model is to be used for control 

system design. In this paper, an overview is given of proposed methods to overcome this problem by excitation of 

the (estimated) gain directions of the system. A new method, where the dynamics are explicitly taken into account, 

is also presented. This method is significantly simpler than some other methods proposed for inclusion of dynamics 

in the design. Thus, it is suitable for practical application. The methods are illustrated and compared by an 

instructive example of a 2 2  system. A dynamic experiment design for a 3 3  system is also presented. 

 

 

1 INTRODUCTION 

 

System identification is the art and science of determining a mathematical model from data that describe the 

behaviour of the system. An essential part of this endeavour is the experiment design for generating the data. This, 

in turn, should be a function of the intended use of the model. For example, if the model is to be used for design 

of a feedback controller, closed-loop properties are important. The numerical algorithms used for determining the 

model cannot produce a good model if the data is a poor representation of the system for the intended use. 

 

Systems with multiple inputs and multiple outputs (MIMO) are generally more difficult to identify than systems 

with a single input and a single output (SISO) due to interactions between the variables. Because of the interactions, 

controllability issues are more difficult to handle in MIMO systems than in SISO systems. Surprisingly little is 

said about experiment design for MIMO system identification in major textbooks on system identification /11, 13, 

15/. The most advanced advice is that the inputs should be perturbed simultaneously in an uncorrelated way using, 

for example, uncorrelated pseudo random binary sequences (PRBS) that mimic the properties of white noise. 

However, this design might result in strongly correlated outputs, which is not good for identifiability. 
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In the control of industrial MIMO systems, integral controllability (IC) is usually a required property. This means 

that the closed-loop system must be stable when controllers with integral action are used, and remain stable if the 

controllers are detuned /1, 12/.  This motivated an experiment design based on an estimate of the static gain matrix 

of the system /12/. In this design, the static gain directions of the system are explicitly excited. An overview of 

various developments of this procedure is given in /2/. 

 

It is desired to identify the dynamics of the system although the design is based on the static gain matrix. In 

practice, this often works well /7, 8/. However, a systematic handling of input and output constraints is difficult in 

the procedure. Furthermore, the method may, due to the dynamics of the system, result in correlated outputs 

similarly to the case when uncorrelated inputs are used. To overcome these drawbacks of the gain-directional 

design, a new design procedure has been proposed /5, 6/. In this procedure, the correlation of the outputs is 

minimized based on an estimate of a dynamic model of the system. 

 

In this paper, an overview of the gain-directional design as well as the new optimization-based dynamic design is 

given. It is shown that the dynamic design can be implemented in the same simple way as the gain-directional 

design. Thus, it is very suitable for practical application. The methods are illustrated and compared by an 

instructive example of a 2 2  system with two inputs and two outputs. A dynamic experiment design for a 3 3  

system, for which gain-directional designs have previously been done /3, 4, 9/, is also presented. 

 

2 EXPERIMENT DESIGN 

 

2.1 Gain-Directional Design 

 

Consider a system with the transfer function matrix ( )G s , the input vector ( )u t , and the output vector ( )y t , where 

the argument t  denotes time. Let K  be an estimate of the static gain matrix (0)G . Define 

 ( ) : ( )y t Ku t , (1) 

where ( )y t  is the output a static system would have. A singular value decomposition (SVD) of K  yields 

 
TK W V  , (2) 

where W  and V  are orthogonal matrices and   is a diagonal matrix of singular values. The orthogonality means 

that 
TV V I  and 

TW W I , where I  is an identity matrix of appropriate dimension. 

 

A new signal vector, the design signal ( )t , is introduced. The design signal has n  vector components, where n  

is the number of singular values in  . It is implemented by the input 

 1( ) ( )u t V t  . (3)   

It is instructive to consider the output ( )y t  with this input. Substitution of Eqs (2) and (3) into Eq. (1) yields 

 

1

( ) ( ) ( )
n

i i

i

y t W t w t 


  , (4) 
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where iw  is the ith column of W  and ( )i t  is the ith component of ( )t . This means that ( )i t  excites the ith gain 

direction of the system. It follows from Eq. (4) that 

 T
yP WP W , (5) 

where xP  denotes the covariance matrix of a vector-valued time series ( )x t . 

 

The gain directions can be excited in different ways, e.g., sequentially one at a time or simultaneously, using 

different kinds of inputs such as step changes (pulses), pseudo random binary sequences (PRBS) and multi-

sinusoidal signals /2/. If the gain directions are excited simultaneously, the signals ( )i t , 1, ,i n , should be 

mutually uncorrelated. If they all have the variance 
2a , 2P a I   and 2 T

yP a WW . If the system has equally 

many outputs and inputs, W  is square and 
TWW I , resulting in 2

yP a I . This means that the static outputs 

iy , 1, ,i n , are uncorrelated. 

 

2.2 Static Design with Constraints 

 

Assume that the input ( )u t  has the covariance matrix uP . From Eq. (1) it then follows that 

 T
y uP KP K . (6) 

If yP  is defined by the design objective, and K  is non-singular, uP  can be solved out as 

 1 T
u yP K P K  , (7) 

where TK   denotes the inverse of TK . If yP  is specified as in Eq. (5), 

 1 T T 1 1 T
uP K WP W K V P V 

       . (8)  

 

If the design signal has the property 2P a I  , 1 1P
    is diagonal, from which it follows that uP  has the SVD 

 T
uP V V  ,   1 1P

     . (9) 

This means that the gain-directional design can be obtained from a SVD of uP  as 

 1/2( ) ( )u t V t  , (10)  

where 1/2  replaces 1  in Eq. (3). 

 

The advantage of using Eq. (6) for obtaining uP , and subsequently the input design (10), is that variance 

constraints on ( )y t  and ( )u t  can be handled. Assume that the constraints are 

 , ,u ii u iiP R ,   , ,y ii y iiP R , (11) 

where ,u iiR  and ,y iiR  denote the maximum allowed variances of iu  and iy , respectively. It is desired to obtain 

uncorrelated outputs, which means that y yP R  is desired if permitted by , ,u ii u iiP R . According to Hadamard’s 



 4 

inequality, for any positive definite matrix xP , ,det x x ii

i

P P


 , with equality if and only if xP  is diagonal /10/. 

This means that maximizing det yP  with respect to uP , subject to Eqs (6) and (11), will result in y yP R  if the 

input constraints are not restrictive. This can be expressed as a convex optimization problem, which is easy to 

solve using, e.g., MATLAB and the YALMIP software /14/. 

 

This way of handling constraints in the framework of gain-directional input design, is significantly simpler than 

previously proposed methods (see /2/). 

 

2.3 Dynamic Design with Constraints 

 

Consider a discrete-time state-space model 

 
( 1) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k

y k Cx k Du k

  

 
 , (12) 

where k  denotes discrete time expressed as sample index, ( )u k  is a vector of un  inputs, ( )x k  is a vector of xn  

state variables, and ( )y k  is a vector of yn  outputs, all at time instant k . The matrices A , B , C  and D  are 

standard state-space matrices of appropriate dimensions. Assume that ( )x k  and ( )u k  are uncorrelated. Then, 

 

T T
d d d d

T T

x x u

y x u

P A P A B P B

P CP C DP D

 

 
 , (13) 

where uP , xP  and yP  are stationary covariance matrices of ( )u k , ( )x k  and ( )y k , respectively. To obtain a 

design that produces uncorrelated outputs, det yP  is maximized with respect to uP  and xP  subject to Eq. (13) and 

similar constraints as in Eq. (11). A SVD of uP  yields the required matrices to implement the design by Eq. (10). 

This way of determining and implementing a dynamic experiment design is significantly simpler than some 

previously proposed ones (see /5/). 

 

According to Eq. (12), ( 1)x k   is correlated with ( )u k , and consequently ( )x k  is correlated with ( 1)u k  . The 

requirement that ( )x k  and ( )u k  be uncorrelated, then requires that ( )u k  is uncorrelated with ( 1)u k  , which 

means that the time series produced by ( )u k  must contain no autocorrelation.  This also means that the components 

( )i k , 1, ,i n , must contain no autocorrelation. A signal type that satisfies this requirement is a random binary 

signal (RBS). However, in practice it is usually desired to have an input that covers a certain frequency range more 

uniformly than a RBS. A pseudo random binary sequences (PRBS) is such a signal, but it contains autocorrelation 

if the sampling interval is smaller than the minimum switching time, as is often the case. 

 

One way of solving the autocorrelation problem with a PRBS signals is to do the design using a sampling interval 

equal to the minimum switching time even if a smaller sampling interval will be used in the implementation. 

Another solution, which works in practice, is to initially neglect the autocorrelation issue. It has been observed 

that a PRBS signal will produce uncorrelated outputs, but with higher variances than the design variances. Since 
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a dynamic model is available for the design, it can be used to determine the output variances produced by the 

design. If the simulated output variances are ,y iiS , 1, ,i n , the optimization can then be redone with the output 

variance constraints 1
, , ,y ii y ii y iiP R S . 

 

3 ILLUSTRATION OF INPUT DESIGNS 

 

In this section, the various input designs are illustrated by a simple example. The system is described by the 

continuous-time state-space model /16/ 

 
c c( ) ( ) ( )

( ) ( )

x t A x t B u t

y t Cx t

 


, 

87.8 1.41
194 194 15

c c1 108.2 1.4
15 194 15

0 1 1
, ,

0 10
A B C

    
     
       

 , 
87.8 86.4

108.2 109.6
K

 
  

 
.  (14) 

The gain matrix has the condition number 142  , which mean that the system is ill-conditioned. For simplicity, 

units are left out. 

 

In the following designs, PRBS signals are used as inputs ( )u k  or design signals ( )k . The signal amplitude is 1, 

the sequence length is 255 ( 82 1    ), and the minimum switching time is 4. The sampling interval is 1 time unit. 

The two PRBS signals for each design are made uncorrelated by time-shifting them by half the sequence length 

(approximately). Recommendations on PRBS design are given in /11, 13, 15/. 

 

The true model is used in the gain-directional and dynamic designs. This is considered acceptable since the purpose 

of the study is to illustrate the designs and the main differences between the results. Tests with approximate models 

yield very similar results. Because the output correlation is the main interest, input amplitudes are not adjusted 

(e.g., by redoing the optimization) to make output variances similar in the various designs. 

 

3.1 Uncorrelated Inputs 

 

The standard textbook suggestion of using uncorrelated inputs is illustrated first. Figure 1 shows a scatter plot of 

2 ( )y k  vs. 1( )y k , which illustrates the output distribution obtained by this design. The determinant of the output 

correlation matrix has the value 0.005. 

 

As can be seen, the output distribution has a very strong directionality, which is a clear disadvantage when a model 

is determined from data. The result could, e.g., be that the sign of the determinant of the gain matrix of the estimated 

model is different from that of the true system. In such a case, controllers with integral action that stabilize the 

model, will not stabilize the true system. 



 6 

 

3.2 Gain-Directional Design 

 

The gain-directional design is implemented by Eq. (3), where ( )t  is the same vector of PRBS signals as ( )u t  in 

the uncorrelated design. A SVD of K  yields 

 
1 0.0051 0

0 0.7187

  
   

 
 ,     

0.7066 0.7077

0.7077 0.7066
V

  
  

 
. (15) 

 

Figure 2 is a scatter plot of 2 ( )y k  vs. 1( )y k  for this design. According to the design, static outputs would be 

uncorrelated, but here there is a clear correlation due to the dynamics of the system. In this case, the output 

directionality is weaker than and opposite to the directionality of obtained by uncorrelated inputs. The determinant 

of the output correlation matrix has the value 0.22. 

 

3.3 Dynamic Design 

 

For the dynamic design, the state-space model (14) is converted to a discrete-time state-space model (12). Using 

the sampling interval 1 and assuming constant inputs between sampling points, the discretization results in 

 d

0.9949 0

0 0.9355
A

 
  
 

 ,   d

0.9974 0.9974

0 0.9674
B

 
  
 

. (16) 

Using the output constraint yR I , but no input constraint, maximization of det yP  subject to Eq. (13) yields 

 
1.00 0.00

0.00 1.00
yP

 
  
 

, 
7.9176 7.8182

7.8182 7.7389
uP

 
  
 

, 
1/2 0.0979 0

0 3.9556

 
   

 
, 

0.7031 0.7111

0.7111 0.7031
V

  
  

 
, (17) 

where 1/2  and V  are obtained from a SVD of uP . The input directions shown by V  are almost exactly the same 

as the input directions of the gain-directional design, but the amplification of the gain directions shown by 1/2  

and 1  are different. 

 

Figure 3 is a scatter plot of 2 ( )y k  vs. 1( )y k  for this design. Now the outputs are almost completely uncorrelated, 

the determinant of the output correlation matrix having the value 0.98. 

   

     Figure 1. Uncorrelated inputs.        Figure 2. Gain-directional design.          Figure 3. Dynamic design. 
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4 DYNAMIC DESIGN FOR A 3 3  SYSTEM 

 

The system for this case study has the transfer function 

 

5 5 5

5 3 5

5 5 4

6e 20e 1e

22 1 337 1 10 1

8e 77e 5e
( )

50 1 28 1 10 1

9e 37e 103e

50 1 166 1 23 1

s s s

s s s

s s s

s s s

G s
s s s

s s s

  

  

  

 
 

   
 
 

   
 

  
    

. (18) 

The system was originally presented by Vasnani /17/, but here an input and an output have been rescaled to make 

the system more ill-conditioned and thus more interesting for this study /3, 4, 9/. The condition number of the gain 

matrix is 30. A SVD of the gain matrix gives the matrices 

 1

0.0088 0 0

0 0.0134 0

0 0 0.2645



 
 

 
 
  

 ,   

0.0468 0.1575 0.9864

0.5444 0.8320 0.1070

0.8375 0.5320 0.1247

V

 
 

 
 
  

 . (19) 

 

For the dynamic design, the model is first converted to a discrete-time transfer function using the Z-transform. In 

this case, the sampling interval 2 is used. Each discrete-time transfer function is converted to a discrete-time state-

space model in such a way that the time delays are included as extra state variables in the model. The state-space 

models for all transfer functions are collected to a single state-space model of the form (12). Because only the time 

delays in excess of the minimum time delay 3 matter for the input design, the time delay 3 is removed from all 

transfer functions before the conversion to state-space models. In this way, the order of the full state-space model 

can be kept as low 16. 

 

Maximization of det yP  subject to Eq. (13) and the output constraints , 1y iiP  , 1,2,3i  , gives the input 

covariance matrix uP .  A SVD of uP  gives the matrices 

 1/2

0.0355 0 0

0 0.0653 0

0 0 0.8356

 
 

 
 
  

 ,   

0.0688 0.0620 0.9957

0.1360 0.9882 0.0709

0.9883 0.1403 0.0595

V

 
 

  
 
  

, (20) 

where the signs of columns 2 and 3 in V  have been switched to make comparison with (19) easier. The most 

notable difference is in elements (2,1) and (3,2), which is caused by the very different dynamics in the transfer 

functions. 

 

Figure 4 shows the inputs and the outputs of the dynamic design using uncorrelated PRBS signals with sequence 

length 127 and minimum switching time 10 as design signal. Figure 5 shows scatter plots of 1y  vs. 2y , 1y  vs. 3y

and 2y  vs. 3y . As can be seen, the output distribution is well balanced. The determinant of the output correlation 

matrix is 0.98. In this case, the result of a static gain-directional design is not nearly as good.  
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5 CONCLUSIONS 

 

An overview of experiment design methods for MIMO identification was given with special emphasis on the 

identification of ill-conditioned systems when the intended use of the model is control system design. A new 

method, where (estimated) dynamics can be taken into account in the design, was presented. The design method 

is formulated as a convex optimization problem that can be solved by standard software in a straightforward way. 

The implementation of the design is simple, which makes the method suitable for practical application. 
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