Manufacturing Execution in combination with Autonomous Agents based on SAP and OPC UA

Ruediger Fritz, SAP

October 11th 2017
OPEN INTEGRATED FACTORY – GENERATION 2017
Smart Products
OPC UA as the standard for each machine unit
The System Layers
The Digital Plant in the Extended Supply Chain

MONITOR

DESIGN

PLAN

RESPOND

PRODUCE

DELIVER

OPERATE

ERP S/4
- Production plan
- Bill of materials (BoM)
- Variant management
- Production steps...

MES (ME & MII)
- Production details management
- Detailed and flexible
- Production step routing
- Shop floor controls for each step...

PCo
- Mapping of ME production details to PLC control parameters (recipe)
- Buffer recipe for fast access
- Set/Get parameters - Server/Client...

PLC (Machine)
- Sensor detects material carrier
- Requests control parameters from ME...

Connectors
- Serial Numbers
- Quality results per lot
- Order confirmation
- Inventory update, Equipment usage...

- Log parametric data
- Tolerance checks
- Return “conformance” or “non-conformance” decisions

- Mapping of measured values/results to Business Data Model

- Machine reports completion and requests next operation

only excerpt of involved entities
Automation Workflow Example

Loop M → PCo: “Mover with SFC 123 arrived at Pos Y4”
PCo → Loop B: “Move SFC 123B to Pos B4”
Loop B → PCo: “Mover with SFC 123B arrived at Pos B4”
PCo: (Get Lock for Rob B)
PCo → Rob B: “Do Job #3 – Handle SFC123”
Rob B → PCo: “Job #3 – Handle SDF123 done”
PCo → Loop B: “Release Mover” (move on)
PCo → Loop M: “Move SFC 123 to Pos 5”
Loop M → PCo: “Mover with SFC 123 arrived at Pos 5”
PCo → Cam: “Take Photo [Par: expected colour blue]”
Cam → PCo: “Camera result: [not blue, URL to .jpg …]”
Log Non-Conformance in ME-System

…
Real Life Example: Open Integrated Factory – Generation 2017
Machine Units seen as Service Providers and Service Consumers (SOA)

(1) Each machine unit is independent
» In a departure from convention, the units are not linked to each other by a single program inside a single PLC
» Each unit comes with its own controller

(2) Units are talking to each other on the basis of OPC UA
» From business perspective (production order details like routing and recipe/set-points) the units are orchestrated by SAP Plant Connectivity (Vertical Integration)
» From technical perspective, some machine units – here Camera and Robot - exchange information directly (Horizontal Integration)

(3) Units are OPC UA Client and OPC UA Server at the same time
» A server can offer tags, events and methods
» A client can consume/react on tag changes and events and call methods

(4) Units publish their capabilities
» A Service Oriented Architecture with regards to hardware is possible
SAP Plant Connectivity: OPC Client and OPC Server Communication Patterns in Context of Machine Integration

A Notification

Insights, Alarms etc.

Transaction → DB Record (Time Series)

(Guaranteed) Notification Delivery, Buffer mechanisms, Filter/Rule Framework, Customer specific code, ...

B Query

Dashboards, Applications

Destination (e.g. MII, ME, HANA, SAP Cloud ...)

Tag-Query

C Synchronous Service Calls

SAP PCo (OPC Client)

OPC UA Methods, Custom Orchestration*

Query-Interface (Read/Write)

Classical Gateway Task: Protocol conversion, Source/Destination mapping

Data Source/Machine (e.g. OPC UA-Server)

Services

*Project specific configuration/implementation

© 2017 SAP SE or an SAP affiliate company. All rights reserved.
Autonomous Agents based on OPC UA in Production
Challenges to Manufacturing Today…

Cyber-Security
- Increasing Interoperability = Increasing Vulnerability
- Manage Complexity

Modular Assembly
- Assembly Line replaced by Cellular Manufacturing
- New organizational structures require ad-hoc decisions
- Increasing Interoperability

AI / Machine Learning
- Insight to Automation (immediate action)
- Pattern Recognition
- Autonomous Systems, Edge Processing

Challenges to Manufacturing Today…

» Modular Assembly
 » Assembly Line replaced by Cellular Manufacturing
 » New organizational structures require ad-hoc decisions
 » Increasing Interoperability

Modular Assembly

» Dynamic Routing → alternative operations, alternative resources
Ad-hoc decisions based on frequent machine-to-machine communication (status, set-up, availability …) linked to business data (order details, master data …)

Arbitrary sequence
Either / Or
All possible paths
AI / Machine Learning

» Autonomous Systems, Edge Processing
Low Cost Set-up for demonstrating a powerful concept of modern Manufacturing Execution
Resource A - D could represent e.g. 4 (identical) packing machines
A single box could represent e.g. an Autonomous Guided Vehicle (AGV) or just a kind of Handling Unit.
• each Box one RPi with OPC UA Client
• all Resources managed by another RPi3 with OPC UA Server
Technical Basis
SAP Plant Connectivity on RPi Linux

(1) Networking over Wireless LAN
(2) Software Development
 » .Net Mono Framework
 » OPC UA 1.0.3 libraries
 » Custom-developed .Net dll to provide RPi Device IO connectivity

April 24 – 28, 2017
Hannover, Germany
Negotiation can start – pressed Button initiates communication via WiFi
First step: SAP PCo on RPi as OPC UA Client to SAP PCo as OPC UA Server wrapping the SAP MES: “get_current_sfc” (means get the Production Order from MES which is in work right now)
Second step: SAP PCo on RPi as OPC UA Client to other SAP PCo as OPC UA Server managing the (four) resources: “get_free_resource”

Behind this method any sophisticated logic could run -
e.g. a machine learning based algorithm!
Logic on OPC UA Server RPi proposes and allocates the appropriate Resource (OPC UA Method response)
Validation by NFC
Validation by NFC, follow up communication/confirmation to SAP MES
Short comment about challenges of OPC UA …?
Thank you!
Thank you.

Contact information:

Rüdiger Fritz
Director Product Management SAP Plant Connectivity
Dietmar-Hopp-Allee 16, 69190 Walldorf
0049 6227 740142
ruediger.fritz@sap.com
Appendix
SAP Plant Connectivity: OPC Client and OPC Server Communication Patterns in Context of Machine Integration

A Notification

- Insights, Alarms etc.
- Transaction
- DB Record (Time Series)
- (Guaranteed) Notification Delivery, Buffer mechanisms, Filter/Rule Framework, Customer specific code, ...

B Query

- Dashboards, Applications
- Tag-Query
- Query-Interface (Read/Write)

C synchronous Service Calls

- **SAP PCo**
 - OPC UA Methods, Custom Orchestration*
 - Classical Gateway Task: Protocol conversion, Source/Destination mapping

- **Data Source/Machine**
 - (e.g. OPC UA-Server)
 - Device Tag (Data Point)
 - Services

Foundation:

- **OPC UA Methods**, Custom Orchestration*
- **OPC UA Client**

*Project specific configuration/implementation
SAP Plant Connectivity – more than just a simple Gateway for Connectivity

Supported protocols:
- **OPC UA, MQTT, OPC DA, OPC HDA, OPC Alarms, Citect, IP2I, Osisoft PI (2), Proficy Historian, File-Monitor (2), ODBC, DLE DB, Socket, Modbus**
- **SDK for proprietary, specific agents** (e.g. ifm Linerecorder, UDP, RFC1006, Euromap 6x, Atlas Copco Open Protocol, Kafka and multiple other project specific implementations)

Devices, Logic Controllers, Historians
Each production step documented and available for analytics.
Another Device integration
Torque To-be and as-is PDC
Plant Connectivity – An Example of Configuration
AI / Machine Learning with immediate action on automation level

» SAP PCo (OPC Client) → Cloud / Data Lake → Apply Model to Dynamic Edge Processing → SAP PCo to Automation

Input (Edge):
- Sensors
- Images
- Production Order
- Master Data
- ... and more

Machine learning (Cloud):
- Train model
- Prepare data
- Apply model
- Capture feedback

Output (Edge):
- Applied model
 - Run Machine Learning Algorithm at the Edge
 - Immediate action can be taken