OPC DAY FINLAND 2019

6.-7.11.2019 @ EXPO AND CONVENTION CENTRE MESSUKESKUS HELSINKI #OPCUA #OPCDAY #OPCDAYFINLAND #AUTOMAATIO

OPC Foundation Mission, Organization and Collaboration

by Stefan Hoppe, President OPC Foundation

SPONSORS:

OPC Foundation https://opcfoundation.org

- Vision
 - Secure & reliable
 - Vendor, platform, and domain agnostic
 - interoperability from sensor to enterprise and beyond
- Global Profile
 - Non-profit organization (founded 1995)
 - Companies from Automation & IT
 - Internationally recognized: OPC UA is IEC62541
- Deliverables
 - Specifications: openly available
 - Tools and code examples for faster, easier adoption (AnsiC/C++, C# .NET Standard, Java)
 - Certification: OPC Labs open to everyone
- Ecosystem with toolkits and education
- Modern IPR policy

Organizational Overview

Membership: 734 (Nov 5th, 2019)

2019 Board of Directors

Microsoft	Honeywell	Rockwell,
SAP	Yokogawa	Schneider,
Siemens	Mitsubishi	ABB
Beckhoff	Ascolab	

OPC Foundation: Largest Eco System for Interoperability

734 members - Status Nov 5th, 2019 - ... plus 120 Logo members

OPC Foundation: Why to joint as member?

Volkswagen is the 600th member of OPC Foundation

Stefan Hoppe OPC Foundation Volkswagen

Michael Schweiger

"With OPC UA at the heart of Industie4.0, adopting the OPC UA technology and using it to its full potential in our factories is a natural progression.

Being a member of the OPC Foundation guarantees early information to upcoming key technologies like the OPC UA Companion specifications which provide secured and standardized information and interfaces for assets."

Michael Schweiger, Volkswagen

OPC Foundation: Organization

Structure of organization

- · Board of Director, Officers, Directors
- Control Boards
 - Technical Control Board (TCB)
 - Marketing Control Board (MCB)
- Technical Advisory Council (TAC)
- Markets Advisory Council (MAC)
- Local groups (countries..)

OPC Foundation: Experts Program

https://opcfoundation.org/experts/

- List of OPC UA experts willing to offer services to interested vendors or organizations
- Technical Control Board (TCB) defined criteria
- Types of skillsets clearly identified

IM = Information Modeling

AD = Application Design

SC = Security Consulting

TR = Training

IS = Implementation Support

Registered Experts: 26 (as of Nov 5th, 2019)

Experts

Expert Name (alph)	Contact	Language	IM	AD	sc	TR	IS
Armstrong, Randy	randy@sparhawksoftware.com Canada Phone <u>+1 425 296 7731</u>	English	Υ	Y	Y	Υ	Υ
Aro, Jouni	jouni.aro@prosysopc.com Finland Phone +358 9 420 9007	Finnish English	Y	Y	Υ	Υ	Υ
Condemine, Michel	michelc@4ce-industry.com Montpellier, France Phone <u>+33 4 67 79 07 37</u>	French English	Υ	Y	Y	Y	Υ
Damm, Matthias	info@unified-automation.com Kalchreuth, Germany Phone: <u>+49 911 495 25000</u>	German English	Y	Υ	Y	Y	
Gappmeler, Gerhard	info@unified-automation.com Kalchreuth, Germany Phone: <u>+49 911 495 25000</u>	German English		Y	Y		
Hunkar, Paul	Paul.Hunkar@dsinteroperability.com Cleveland, Ohio Phone +1 (440)-337-4161	English	Y	Y	Υ	Y	
Mahnke, Wolfgang	info@unified-automation.com Kalchreuth, Germany Phone: ±49 911 495 25000	German English	Υ	Υ	Υ	Υ	

Note: The OPC Foundation does not assume liability for the quality and outcome of these services.

OPC UA in the world

IIC

Made in China2025

Japan IVI

History – Use Case Driven

- Definition 2003 2006
- Verification and Implementation 2006 2008
- Final OPC Foundation Release 2009
- ▶ IEC 62541 Release 2010 2012

▶ OPC UA = established OPC features

- + Platform independence+ Standard internet and IP based protocols
- + Built in security features
- + Generic object model
- + Extensible type system
- + Scalability through profiles+ Migration path from Classic OPC

Today

- Open source and toolkits available
- No membership required to adopt OPC UA
 Certification for members and non-members
- Strong IPR policy protection also for non members

PC UA The Industrial Interoperability Standard

OPC UA: The industrial framework enabling secured, standardized data and interfaces

Interoperable

Vendor, Platform, Market and OS **Independent**

Scalable From Sensor to Cloud

Discoverable Services Oriented Architecture

Independent of transport protocol

Non-Profit (OPC Foundation)

Widely Adopted: >50M install base

Open Source on GitHub

Data Modelling

Graph Support, preserves source context

Vendor **extendable** data model via Companion Specifications

Relevant: Enables domain specific information models

- Discrete: Robotics, Machine Vision, ...
- Process: FDI, FDT, PA-DIM, MDIS, NOA...
- Energy: IEC61850, ...

Secure

Secure Design from group up

Based on open security standards

Auditing, Authentication & Encryption

Future Proof: Evolves with security technologies

Vendors/Users can choose level of security

Accepted: Aligned with IT requirements

... today 50+ initiatives!

Vendors will differentiate on features not interfaces...

Commercial printers

- Different vendors
- Standardized connectors
 USB / Ethernet
 Support profiles "I am a printer"

- Differentiate by functionality
 - All-in-once scan/fax/print?
 - Double side printing?
 - Colour? Combined or separate?
 - Print speed, cost, etc.
 - Ease of use
 -

Industrial devices / machines

- Different vendors
- Standardized connector: OPC UA Support profiles "I am an RFID reader"
- Built in security

- Differentiate by functionality
 - Reduce engineering costs
 - Support standards
 - Easy network integration
 - Costs
 - Throughput of machine
 -

Brownfield integration: Gateways!

Before USB

DIN Keyboard / Centronics printer / PS2 mouse

Transition

Use adopters to connect old and new world

With USB

Benefit:

Consistent, compatible data model for all machines, plus security!

Market of gateways

- <\$500
- Connect to PLCs or fieldbus systems
- No changes to machines required!

History: Humans had to learn how machines think and work

DATA TABLE 5

WORD0 = 0x5128

WORD1 = 1111000010101001

WORD2

WORD3

. . .

WORD255

- Huge documentation efforts
- Different parameters for different vendors
- High efforts for humans to understand

Machines should help humans in "their language"!
Self-description reduces

engineering

Today: Machines help humans to easier

understand the process

The self-description reduces configuration effort and supports quick understanding of information.

INTERNATIONAL DATA SPACES ASSOCIATION

industrial internet

IT

ISA-95

Industries

...INDUSTRIE4.0

The Industrial Interoperability Standard

W3C*

MADEIN中国制造

2025

IEC

CÉMAFON

EUMAB IS

EUROM

OPC Foundation: Difference between CS and JWG

UA Companion Specifications

The Base: OPC UA Infrastructure

OPC UA has been designed for scalability and supports a wide range of application domains, ranging from field level (e.g. devices for measurement or identification, PLCs), to enterprise management support. To achieve these design goals, the OPC UA standard provides a multi-layered architecture as shown in the following figure:

OPC UA is built on the following Infrastructure:

 Discovery which allows Clients to find OPC UA Servers, their supported protocols, security policies and other capabilities.

UA Companion Specs

- Can be done by everybody OPCF not involved - No OPCF logo
- 3 categories
 - Internal
 - Joint
 - External
- CS word templates available

Joint Working Groups

- In cooperation with OPCF OPCF voting, review
- Definition / Criteria / How to create
- Rules for deliverables
- Levels of adoption
 - Specification
 - Adoption
 - Certification

OPCF joint working group (JWG) – Definition, Criteria, How-to

gives an introduction and definition about OPC Foundation Jo

Interediation

OPC foundation Jelent Working droups

Interediation

OPC (M. is a series of upon Endering production production and production account reliable information of the interest production in a manife distinct plan (Sec. May seem of OPC (M. is designed information modeling, and is the foundation producing accomplish first production accounts to the subsequent of the secretary of the interest production producing accomplish information accounts to the advertage of the searches interesting capabilities of OPC (M. are the fundamental components necessary for senantic biomographisms of OPC (M. are the fundamental components necessary for senantic biomographisms in the senantic production of the senantic soft of the senantic models are described in what is livered in OPC (M. are the fundamental components necessary for senantic biomographisms in what is proved in OPC (M. are the fundamental components necessary for senantic liverage described in what is livered in OPC (M. are the fundamental components necessary for senantic liverage of the OPC (M. are the senantic control of the senantic control of the opcortain of the

Public documentation for joint working groups https://opcfoundation.org/about/working-groups/joint-working-groups/

- Definition
- Criteria
- How to create
- Levels of adoption (specification / adoption / certification)

A "joint companion specification" is not a technology of the OPC Foundation.

The OPC Foundation does not guarantee exclusiveness and cannot prove that the use cases of the cooperating organization are fulfilled.

Participation of OPC Foundation members is voluntary. There shall be no expectation that OPC-F provides resources for the JWG.

OPCF joint working group (JWG) – Overview groups

Public documentation for joint working groups https://opcfoundation.org/wpcontent/uploads/2019/02/Overview-UA-InformationModels.pdf

- List of existing groups: What / Who / Contact / Version
- Link to Release
- Traffic lamp for : Implemented / IP tested / Certified

Title	Active	Abstract	Contacts	Version	Status	Status Date	Implemented	IOP tested	Certifcation	Key Words
Generic Device Models (Controller, Field Device, Process Device)										
		generic representation of devices, e.g. Field devices, controllers, robots, machine tools		<u>V1.00</u>	Released	Dec-09				
OPC Foundation:	Υ		Matthias Damm, chair	<u>V1.01</u>	Released	Jul-12				physical device, software component,
UA for Devices (DI)				<u>V1.02</u>	Release Candidate	Jan-19		functional grouping		
OPC Foundation:		A unified view of analysers irrespective of the underlying device protocols. Analyzer devices are comprised of one or more analyser channels with a single address space which has its own configuration, status and control. Examples: Particle Size Monitor, Acoustic Spectrometer, Gas Chromatograph	<askopc></askopc>	<u>V1.00</u>	Released	Oct-09				
Analyzer Devices (ADI)				<u>V1.00</u>	Released	Jan-15				
UA for 61131-3 (PLCopen)	Control program, tasks, controller variables, structured data, function blocks		<u>V1.00</u>	Released	March-10					
	1		Stefan Hoppe, chair	V1.01		In work				PLC, Controller, Automation
UA Client FunctionBlocks (PLCopen)		Зсетан порре, спан	<u>V1.00</u>	Released	Apr-14				PLC, Controller, Automation	
	'	PLC controller initiates UA communication. Controller-Controller, Controller-MES,		<u>V1.01</u>	Released	Sep-16				
UA for Autold Devices (Autold)		Identification device executing a scan, read or write process. Comprises barcode, OCR, 2D code, RFID, NFC, RTLS, sensors and mobile computing	info@AIM-D.de	<u>V1.00</u>	Released	Apr-16				
		Specify and maintain OPC UA Information Models for Process Automation Devices initially based on NAMUR Core Parameters according to NE 131 including assignment of semantic identifiers according								
UA for Process Devices (FCG PA-DIM)	V	the IEC Common Data dictionary and/or eCl@ss.	Achim Laubenstein	V1.00		In wor	k			Process Devices

Version 2019-02-11

Open Process Automation Forum

Open Process Automation Forum (is part of The Open Group)
 www.opengroup.org

- ▶ The Open Group is a non-profit, global consortium for IT standards
- ExxonMobil selected The Open Group
- https://www.opengroup.org/open-group-open-process-automation-forum-launches-o-pas-standard-

~ New reference architecture Standard developed to ensure the security, interoperability and scalability of process control systems ~

San Francisco, California – February 5th, 2019: Today at the ARC Industry Forum event in Florida, <u>The Open Group</u>, the vendor-neutral technology consortium, has announced the launch of its new <u>O-PAS™ Standard</u>, <u>Version 1.0</u>, a preliminary standard of The Open Group. Developed by <u>The Open Group</u> <u>Open Process Automation™ Forum</u> (<u>OPAF</u>), the standard will provide a vendor-neutral reference architecture to enable the construction of scalable, reliable, interoperable and secure process automation systems.

The O-PAS Standard, Version 1.0, is focused on meeting the minimum standard and specification requirements for federated process automation systems, using an open and interoperable reference architecture. A key tenet of the Standard is to adopt 'fit-for-purpose' industry standards that exist in the marketplace today. As a result, the Standard will incorporate a variety of functional elements that are already provided by multiple vendors, including:

- Security: ANSI/ISA 62443 (adopted by ISC as IEC 62443)
- Connectivity: OPC UA
- Systems Management: DMTF Redfish

Process Automation: OPC UA mandatory for NOA

- NAMUR is an international user association of automation technology in process industries https://www.namur.net/en.html
- The NAMUR Open Architecture (NOA) concept offers possibilities to enable innovative solutions for new and existing plants: "NOA Information Model OPC UA implementation mandatory"

More information about NOA: https://www.namur.net/en/focus-topics/namur-open-architecture/

INTERNATIONAL DATA SPACES ASSOCIATION

ISA-95

< Automation M

for efficiency in

Enginee

OpenFog

PLATTFORMINDUSTRIE 4.0

Consortia

USE61400-25

IEC 61400-25 user group

IT

IEC

eCl@ss

The Indust

VDMA represents the breadth of the manufacturing industry

VDMA has more than 3200 member companies

- Agricultural Machinery
- » Air Conditioning and Ventilation
- » Air Pollution Control
- » Air-handling Technology
- » Building Control and Management
- » Cleaning Systems
- Compressors, Compressed Air and Vacuum Technology
- » Construction Equipment and **Building Material Machines**
- Drying Technology
- **Electrical Automation**
- » Electronics, Micro and Nano **Technologies**
- » Engine Systems for Power and **Heat Generation**
- » Engines and Systems

- » Fire Fighting Equipment
- Fluid Power
- Food Processing Machinery and **Packaging Machinery**
- **Foundry Machinery**
- Gas Welding
- » Hvdro Power
- » Integrated Assembly Solutions
- » Large Industrial Plant Manufacturing
- » Lifts and Escalators
- Machine Tools and Manufacturing Systems
- Machine Vision
- Materials Handling and Intralogistics
- Measuring and Testing Technology

- » Metallurgical Plants and Rolling
- Metallurgy
- » Micro Technologies
- Mining
- Plastics and Rubber Machinery
- » Power Systems
- Power Transmission Engineering
- » Precision Tools
- » Printing and Paper Technology
- » Process Plant and Equipment
- » Productronic
- Pumps + Systems
- Refrigeration and Heat Pump Technology
- Robotics

- Robotic + Automation
- Security Systems
- Software and Digitization
- Surface Treatment Technology
- Textile Care. Fabric and Leather Technology
- Textile Machinery
- » Thermal Turbines and Power Plants
- » Thermo Process Technology
- Valves
- » Waste Treatment and Recycling
- » Wind Energy
- Woodworking Machinery

OPC UA CS Release (Candidate)

OPC UA CS under development

Awareness existent

Energy

Factory Automation

OPC UA for AutoID

One communication standard for the whole AutoID world

- Standardized, secured data and interfaces
- Different devices like HF/UHF-RFID, OCR, Optical (1D/2D barcode), RTLS

Adaption

- Harting, Siemens (4 types)
- Balluff, Leuze (2 types), Sick, Turck, (P+F 2019)

Adoption: PLC controller

Supporting "OPC UA for IEC61131-3"

- **-** 3S
- BECKHOFF
- Bosch-Rexroth
- B&R
- Honeywell
- Phoenix Contact
- WAGO

PLC controllers with OPC UA

- ABB
- BECKHOFF
- Bosch-Rexroth
- B&R
- FESTO
- Honeywell
- Lenze
- Mitsubishi Electric
- National Instruments
- Siemens
- Schneider
- Phoenix Contact
- Rockwell
- Omron
- WAGO

Designed by Layerace / Freep

The VDMA is Developing International Standards

- VDMA OPC Machine Vision Initiative leverages its international

OPC UA Machine Vision by China

OPC UA Machine Vision by VDMA

Machine Vision

- » 60 Involved companies world wide
- » over 100 participants

OPC Vision is an accepted G3 Standard -

the group of leading machine vision associations:

» AIA (USA)

EMVA (EUROPA)

» JIIA (JAPAN)

VDMA (EUROPA)

» CMVU (CHINA)

» OPC Machine Vision has been invited to chinese Machine Vision standardizaton meeting (CVSM) in Beijing on 26. and 27.10.2018 as OPC Machine Vision was core topic of meeting.

Agenda was also listing chinese standardization council SAC and also Prof. Zhang.

VDMA Robotics Companion spec based on OPC UA

Requirements – Call for Bidding

- Companion Specification
 - VDMA Robotics Specification
 - AIM RFID Specification
 - PLCopen UA Functions Blocks
- OPC UA Core Specification
 - Full Featured Profiles
 - Additional Facets
 - Security Profiles
- Quantity Measures
 - Data Volume
 - Speed

Certified Information

Future

Presentation on afternoon

OPC Foundation "Field Level Communications Initiative": Extending OPC UA including Deterministic, Safety & Motion down to field level

Separate presentation by Peter Lutz, Director FLC

OPCF Press Conference SPS 2018 ABB, Beckhoff, Mitsubishi, Rockwell, Siemens, Schneider

OPCF Press Conference SPS 2018 Overcrowded!

OPC Foundation: Roadmap

https://opcfoundation.org/about/opc-technologies/opc-ua/opcua-roadmap/

Recent innovations in v1.04

2019: Relate with established semantic models (Dictionary Reference)

 An infrastructure to reference from an OPC UA Information Model to external dictionaries like IEC Common Data Dictionary or ecless.

2019: Interfaces and Addins

 Interfaces and Addins complement the type model and can be used when subtyping is not suitable for a required extension.

PubSub

 New communication schema to enable and optimize OPC UA for one-to-many, many-to-one, or many-to-many configurations.

JSON Web Token, OAuth2

 User identification using the authorization service well-established in modern cloud applications (Azure, Google, Facebook, ...)

Reverse Connectivity

Servers behind firewalls can use reverse connectivity.

SessionLess Services

 Avoids session establishment for use cases where Servers are called infrequently.

2019/2020 - <u>Features worked on</u>

Deterministic UA: Mappings to TSN

 This project will add a transport mapping of OPC UA <u>PubSub</u> to Time Sensitive Networking (TSN). Based on this mapping, deterministic data exchange between UA applications is possible.

Field-Level Communication (FLC)

 The goal of this initiative is to extend OPC UA to the field by addressing all relevant use-cases for Process- and Factory Automation including for instance determinism, safety and motion.

Alias names

This feature will enable locating Nodes (Objects, Methods, or Variables) on a global level (e.g. in an entire system). An AliasName is an alternate well defined name. Global OPC UA discovery services maybe constructed that aggregate all AliasNames on OPC UA Servers in a system and then serve as a system-wide lookup service for Clients.

Harmonization of companion standards

Many organizations use OPC UA to model and expose their existing information. Sometimes, however, the definitions overlap or are identical. This project supports companion working groups to

2021 and beyond - Vision

The following features are under consideration. No concrete specification work has been initiated.

Transactions

 With the increasing popularity of OPC UA in various industries, we also see more and more scenarios where OPC UA is used for configuration. Simple configuration tasks can be solved with Methods, for more complex scenarios, transactions will be needed.

MetaData in the Cloud

 When data are published to cloud applications, most of the meta information that is in the Server's AddressSpace is not part of these data. The "MetaData in the Cloud" project targets this deficiency.

Cloud-Relay

 The cloud-relay capability allows for connectivity between UA applications even when both Client and Server are behind separate firewalls.

Deterministic communication using 5G

The 5th generation wireless systems will provide better performance and determinism. Similar to the TSN mapping a mapping of PubSub to 5G protocols

OPC Foundation: United Nations for Industrial Automation

Independent / Neutral ground to work together / No company, no country can dominate OPC Foundation Standards can only developed together

Information: Brochures Updated (v9a) -> v10 official for 2020

- "Interoperability for Industrie 4.0 and the Internet of Things"
- Edition "2020": Extended with
 - New: OPC History
 - Updated: UA Technology article like PubSub integrated into OPC UA
 - New: FLC (2 pages)
 - New: Collaborations (released once)
 - https://opcfoundation.org/resources/brochures/

English

Updated

German

To be translated

Japan

China

na Korea

To be translated

To be translated

To be translated

OPC UA Videos

- Landing page https://opcfoundation.org/resources/multimedia/
 - > OPC UA Vision, Thomas Burke https://youtu.be/7mUmfq0M29U
 - ➤ Learn about OPC UA technology video series by Uwe Steinkrauss
 - > 1: "OPC UA Concepts" (06-2019), 9:30 min https://youtu.be/E2XJfmAEdqw
 - > 2: "OPC UA Transport" (06-2019), 17min https://youtu.be/VCQnLly0cDY
 - > 3: "OPC UA Security" (06-2019), 11min https://youtu.be/z4zNgNdauLY
 - > 4: "OPC UA Profiles" (06-2019), 8min https://youtu.be/CCvlLASACjE
 - > 5: "OPC UA Discovery" (06-2019), 6min https://youtu.be/1NlbUAlOdcA
 - ➤ Learn about certification video by Alexander Allmendinger https://youtu.be/LoYLqvRlyYk
 - > OPC UA Security, Darek Kominek https://youtu.be/NFQfZeU90Kw

OPC UA Videos

Collaboration

VDMA Overview	VDMA Overview 3min, https://youtu.be/5roRSuNIEF0 VDMA Overview in detail 9min https://youtu.be/LhOlC7GNcml
VDMA Plastics and rubber machinery	VDMA Plastics and rubber machinery - 6min https://youtu.be/wwAl2D_fyMw VDMA EuroMAP 12min, https://youtu.be/wwAl2D_fyMw
VDMA Machine Vision	VDMA Machine Vision Overview - 4min, https://youtu.be/BUywlZ1oong VDMA Machine Vision Overview in details - 12min, https://youtu.be/zK8yhyugGNI
VDMA Robotics	VDMA Robotics - Overview - 2min, https://youtu.be/-xgFKg1hXTg VDMA Robotics - Overview in details - 8min, https://youtu.be/ZdLVFI 1S54

OPC Foundation: The United Nations for Industrial Automation

Thank you! - Questions?

Stefan Hoppe
President & Executive Director OPC Foundation
Stefan.hoppe@opcfoundation.org

Looking for more information? https://opcfoundation.org/

OPC DAY FINLAND 2019

NOVEMBER 6-7.11.2019 #OPCUA #OPCDAY #OPCDAYFINLAND #AUTOMAATIO

OPC Day Seminar: 13:00-17:30 Meeting room 203, 2nd floor

