Obfuscation of function block diagrams

Antti Pakonen

Citation:

A. Pakonen. Obfuscation of function block diagrams. 2023 IEEE 28th International Conference on Emerging
Technologies and Factory Automation (ETFA), Sinaia, Romania, September 12-15, 2023. IEEE, 2023.

DOI: 10.1109/ETFA54631.2023.10275363

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/ETFA54631.2023.10275363

Obfuscation of function block diagrams

Antti Pakonen
VTT Technical Research Centre of Finland Ltd., Espoo, Finland
Email: antti.pakonen@vtt.fi

Abstract—Obfuscation is a process of transforming a program
into an equivalent version which is harder to understand and
reverse-engineer. Little attention has been paid to obfuscation
techniques for programs written for programmable logic con-
trollers (PLC). However, there is no reason to assume that an
attacker would not be interested in hiding malicious payload into
a PLC program before it is compiled to machine code.

In this paper, I present five techniques for obfuscating IEC
61131-3 Function Block Diagram (FBD) programs. Four of
the techniques are specific to the graphical representation of
FBD. I then evaluate the applicability of each technique by
experimenting with different PLC programming tools. I prove
that at least four of the techniques are practically applicable,
and demonstrate features that some tools successfully use to
prevent abuse. Stricter rules, if implemented in IEC 61131-3,
would prevent some of the techniques listed.

Index Terms—Programmable logic devices, Embedded soft-
ware, Cyberattack, Intellectual property

I. INTRODUCTION

Software obfuscation can be used for good or evil.

Software developers can protect their intellectual prop-
erty by making their code harder for a pirate to reverse-
engineer [1]. In a cybersecurity sense, obfuscation makes it
more costly for an outside attacker to understand and tamper
with the program they have gained access to [1], [2].

On the other hand, a skillful attacker can employ obfusca-
tion to hide their tracks and thwart discovery after injecting
malicious code [3].

Attackers have been able to inject malware into industrial
programmable logic controllers (PLC) in critical applications
(see, e.g., Stuxnet [4] or TRITON [5]). While the target is
typically the code in the PLC memory, we should not assume
that a bad actor would not be interested in hiding malicious
code in a PLC program before it is compiled, and the attack
can also come from inside the developer organisation.

Accordingly, to cover all aspects of cybersecurity and intel-
lectual property protection, the industry should be aware of the
possible ways to obfuscate PLC programs written in the most
common languages—the programming languages specified in
the IEC 61131-3 standard [6].

However, the literature on obfuscation techniques has to
great extent focused on either compiled machine code, or
general-purpose languages like C/C++ and Java/Javascript [3].

In this paper, I present five techniques for obfuscating IEC
61131-3 function block diagram (FBD) programs. Four of
the techniques are novel, and specific to FBD programs. For
the well-known [3], [7] technique of “Garbage insertion”, I
specify FBD specific patterns for adding superfluous diagram

parts. I then evaluate the applicability of each technique by
experimenting with five different PCL programming tools.
Knowledge of the techniques may be of use for:
o 1&C engineers in protecting their intellectual property, or
making their programs more difficult to tamper with,
o FBD programming tool vendors in developing features in
their tools to detect inadvisable programming practices,
¢ cybersecurity experts in bracing against attack types, and
e IEC Technical Committee (TC) 65 in further clarification
of requirements in the next edition of IEC 61131-3.
In the sections below, “the standard” refers to IEC 61131-
3:2013 (Edition 3.0) [6], and “annex” refers to the supplemen-
tary data online'.

II. PRELIMINARIES
A. Software obfuscation

Obfuscation is the process of transforming a program into
a semantically equivalent version which is harder to reverse-
engineer [1]. It adds a layer of defence by increasing the effort
and the cost for an attacker to gain an understanding of the
program functionality [3].

Different techniques are listed and classified in, e.g., [1],
[3], [7]. Following [1] and [3], we can classify the transfor-
mations into three categories:

1) Control flow transformations aim at altering the flow
of the program. Two commonly [3] used techniques
are garbage (or “bogus”) insertion and the use of
opaque predicates (both of which are employed in Sec-
tion IV-C).

2) Data transformations include variable splitting and
merging, array restructuring, class transformation, class
hierarchy flattening, etc.

3) Layout / lexical transformations consist of scrambling
identifiers, removing comments, reformatting the source
code, etc.

In their literature review [3], Hosseinzadeh et al. found
that most studies on software obfuscation focused on one
or two specific languages, with C/C++ and Java/JavaScript
representing the vast majority. Still, if compiled binary code
were considered one “language”, it would have been the topic
of most studies [3].

The popularity of the C language as the target of obfuscation
is also exemplified by the International Obfuscated C Code
Contest?, held semi-regularly since 1984.

Thttps://doi.org/10.5281/zenodo.8023237
Zhttps://www.ioccc.org/

B. IEC 61131-3 FBD

The IEC 61131-3:2013 is a globally adopted standard
for PLC programming languages [6]. Non-standard, vendor-
specific languages are still used in specific contexts (e.g.,
nuclear power plant safety 1&C [8]), but overall, popularity
of 61131-3 is evident. It is the “leading paradigm” [9] in
industrial control.

The standard specifies five standard programming lan-
guages:

1) Function Block Diagram (FBD)

2) Instruction List (IL)

3) Ladder Diagram (LD)

4) Sequential Function Chart (SFC)

5) Structured Text (ST)

In FBD, the logic is programmed graphically, by connect-
ing signal flow lines between rectangular blocks to form a
network. Each block represents a certain function, having its
input parameters on the left, and output parameters on the
right side. The line connections describe how data flows from
block outputs (or input variables) to block inputs (or output
variables). Additional EN inputs and ENO outputs can be used
for controlling the execution of the blocks.

Section 6.6.2 of the standard specifies standard functions
common to all the languages (e.g., AND, OR, XOR, SIN,
COS, TAN, MAX, MIN, ...), but programmers are free to
specify their own functions, and the internal logic of the
function can be expressed in any of the five languages.

Section 8 specifies rules for the use of graphical elements in
FBD and LD, including the representation of lines and blocks,
direction of flow, and evaluation of networks.

Many details about logic processing, error handling and
graphical representation are left as “implementer specific”
decisions, which will prove relevant for some of the techniques
proposed in Section IV.

III. RELATED RESEARCH

Based on a literature review, obfuscation of 61131-3 FBD
programs is a previously unexplored topic.

In [10], the obfuscation is targeted at the compiled code
running on the PLC, in order to prevent decompilation of
the code back to the FBD program, therefore delaying the
investigation of the attack. In this paper, the focus is on the
obfuscation of the FBD program before it is compiled.

In, e.g., [11] and [12], the obfuscation is also applied to the
compiled code running on the PLC.

In [2], Yang et al. propose three obfuscation techniques for
Statement List (STL), a programming language for Siemens’
SIMATIC system, but claim that the techniques can be ex-
tended to other IEC 61131-3 based languages. First, the “Tex-
tual substitution” technique of identifier scrambling makes
a program harder to read, but also makes the obfuscation
immediately obvious to the reader. Second, the “Control flow
scrambling” technique relies on jump instructions. The stan-
dard does specify a graphical elements for an unconditional
or conditional jump in FBD, and while such jumps are more

common in IL, ST or LD, the abuse of jumps in FBD could
be a topic for further consideration. Third, the “Redundancy
enhanching” technique contains well-known ideas also used
in Section IV-C.

In [13], Lopes presents a tool for extracting sequential logic
from LD programs to translate the program to SFC. Lopes
notes that the translation “somewhat” obfuscates the sequential
behaviour.

Some techniques developed for logic circuit obfuscation
(e.g., [14], [15]) could be applicable to LD programs, in
particular.

IV. OBFUSCATION TECHNIQUES FOR FBD

In this section, I present five obfuscation techniques for FBD
programs. The first is a type of lexical transformation, while
the other four are control flow transformations.

A. Non-Latin characters in identifiers

According to section 6 of the standard, the characters
used in, e.g., function identifiers, are “represented in terms
of the ISO/IEC 10646”. This provides us with interesting
opportunities, since, for example, the Cyrillic capital letter P
(Er) is pretty similar to the Latin P, as is the Greek capital
letter P (Rho). We could therefore take a function like EXPT,
and then specify an altogether different function like EXPT?
(spelled with an Er). Just by looking at the diagram, the reader
could then be fooled into thinking that an element that looks
like the exponentiation function is just that.

Consulting the ISO/IEC 10646 [16], we can find simulacra
for almost the all Latin characters (see Table I for select
examples, the full list is in the annex), only lacking suitable
replacements for F, G, Q, R, U, and W. Since no function
defined in IEC 61131-3 is spelled using only those characters,
we can create a simulacrum block for every default function
there is.

Table 1
POTENTIAL SIMULACRA FOR LATIN LETTERS K, L AND M IN ISO/IEC

10646

Letter Potential simulacrum Code point

K GREEK CAPITAL LETTER KAPPA 039A

K CYRILLIC CAPITAL LETTER KA 041A

K KELVIN SIGN 212A

L ROMAN NUMERAL FIFTY 216C

M GREEK CAPITAL LETTER MU 039C

M CYRILLIC CAPITAL LETTER EM 041C

M ROMAN NUMERAL ONE THOUSAND

216C

The blocks with the fewest potential simulacra are SR and
RS, since there are no simulacra for the letter R, and only S
(CYRILLIC CAPITAL LETTER DZE, code point 0405) to replace
S.

The function with most potential simulacra (1457) is RE-
PLACE, so fittingly, we could use simulacra of REPLACE to
replace quite a large library of function blocks (see Fig. 1).

3Er sticks out here, due to I&TEX rendering the letter using a different font.

Other functions with over a hundred potential simulacra are
CONCAT (485), DELETE (323), LIMIT (215), EXPT (107),
INSERT (107) and SPLIT (107).

REPLACE REPLACE REPLACE REPLACE
— IN1 — —INI — —INI — —INI —
— IN2 — IN2 — IN2 — IN2
—L —L —L —L
—P —P —P —P

Figure 1. Four different blocks, none of them being the IEC 61131-3
REPLACE. (The figure is a PDF file, so the reader can verify this by, e.g.,
copying the identifiers to a text editor.)

Whether this works in practice, of course, depends on the
font, and the programming tool accepting such characters in
identifiers.

In Times New Roman, for example, its fairly clear that the
CYRILLIC CAPITAL LETTER KA is different from the Latin K.
(But since K is not used in the name of any function defined
in IEC61131-3, this is irrelevant.) Otherwise, the character
symbols are effectively the same. With other fonts, this might
not be the case.

B. Logic hidden in execution control parameters

In FBD, is possible to use additional Boolean EN input
and/or ENO output for controlling the execution of each block.
Would it be possible to hide the actual logic we want to specify
in the processing of these execution control variables?

If the EN input is FALSE, the ENO output will always set
to FALSE. This means that we cannot construct an OR gate,
but we can still achieve functional completeness (and build
any logic function) if we can construct both an AND and a
NOT.

To build the AND, we have to use block inputs other than
EN to set the block to error state at our will, which will cause
ENO to go FALSE (even if EN is TRUE).

Here, we try building our basic logic components using
only standard functions defined in IEC 61131-3. The standard
specifies that a division by zero is an error, so we can create
a logical AND (in the ENO) by converting the signal to INT
type and then using the DIV block (see Fig. 2). Depending on
the implementation, MOD might work too.

The standard also specifies that it is an error, if the evalu-
ation of a character string function results in an attempt to
“access a non-existent character position in a string”. The
character positions “shall be considered to be numbered 1, 2,
..., L”, so “0” would cause an error. We can therefore construct
an AND similar to the DIV variant by using the P input of
block MID, INSERT, DELETE or REPLACE (see Fig. 2).

We then need a NOT, but let us not go with the most obvious
choice of “O” negation in either the EN input or the ENO
output. We can use the same blocks we used for the AND,
but we do have to negate the input (see Fig. 3).

It might also be possible to achieve all of this with just
one standard block. It seems that the standard would allow us
to use a multiplexer (MUX) block with just one input (INO)

DIV
A—EN ENO—C
IN1
B 4‘ TO_INT |— IN2 MID
or MOD? A —EN ENO—C

IN
L

B W P

or INSERT, DELETE, REPLACE

Figure 2. AND function implemented in the EN/ENO logic

DIV
EN ENO—B
IN1

A TO_INT IN2

or MOD? EN

IN
A TO_INT

or INSERT, DELETE, REPLACE

MID
ENO—B

s~}

Figure 3. NOT function implemented in the EN/ENO logic

to select from. If the K input is not within the range—the
range now being {0}—we cause an error. Since K and INO are
of type ANY_ELEMENTARY, we can just connect a BOOL
signal to each input. This allows us to construct both a NOT
and then an AND (using the NOT logic), giving us NAND
(see Fig. 4).

AND NOT

V4 \
MUX
A —L MUX ENO[-C
MUX EN ENO}l—K
ENO|— K INO
B—{K INO
INO

Figure 4. NAND function implemented in the EN/ENO logic of MUX

NAND is functionally complete, so we can now con-
struct any logic function we want using just our NAND,
so that we only ever use the (one-input) MUX, and
only ever read the ENO output. To illustrate the idea,
Fig. 5 shows a (two-input) multiplexer using the construction
[i(n0NAND(kKNAND k)] NAND(inl NAND k) [17].

In nuclear power plant I&C systems, the safety 1&C plat-
forms Teleperm XS (by Framatome) and Spinline (by Rolls-
Royce) both assign a “fault” status to each signal (rather than
block) on the diagram [8]. Upon detected failures of measuring
equipment, the associated data can then be marked invalid, and
excluded from voting logics. Could we hide the actual logic
in the processing of the “fault” statuses?

Unfortunately, there is very little information to share. It is
public that in Teleperm XS, “AND logic and OR logic use

MUX

INO
L

MUX

MUX

ENO

MUX ENO— K

T MUX ENO K INO

MUX EN ENO|—K INO
ENO—K INO
K K INO

INO MUX

MUX I EN

ENO—K
IN1 K INO

ENO|—{K
NO
MUX
MUX eNo—— MUX
MUX EN ENO—K
MUX ENO—K INO
ENO K INO

ENO|—{K INO

INO

INO

Figure 5. A two-input multiplexer implemented in the EN/ENO logic using four NANDs based on MUX (with one input)

passive status processing. That is, if one input is invalid, the
output is invalid regardless of the status of the remaining in-
puts” [18]. So, an OR operation is inherent in “passive” blocks.
Whether a NOT can be constructed using blocks with “active”
status processing—to achieve functional completeness—is left
as an exercise to a reader with access to the right documents.

C. Garbage insertion

If superfluous logic does not come with a computational
cost significant for the application, one way to obfuscate a
block diagram is to insert unnecessary garbage [3], [7]. When
adding such clutter, one has to make sure that the extra “fake”
logic we add has no effect on the diagram outputs we care
about.

The figures below introduce exemplar patterns for excluding
superfluous signals from the actually desired processing logic.
Two of them result in a Boolean expression that always
evaluates to FALSE, which is an example of an opaque
predicate [1], a widely [3] used control flow obfuscation
technique.

Such patterns should not be obvious to notice. The patterns
below are not my inventions, but taken from real, practical
industry projects [8], [19], where I have found the issues using
model checking [20]. Here, the logics are simplified and their
origin is masked.

First, in Fig. 6, the bistable SR is always set when the
signal connected to its S1 input is TRUE. If the same signal is
FALSE, the negation causes the SR to reset, regardless of the
lower OR input. This allows us to connect whatever confusing
logic to the OR block, while letting the actual signal pass
through unchanged.

SR

Actual

. => BOOL — SI QI —BOOL
logic

R
OR

Fake

. —> BOOL
logic

Figure 6. Any signal or logic connected to the lower OR input has no effect
on the bistable SR output.

Second, in Fig. 7, the TON (on-delay) would need to receive
a input signal lasting more than five seconds to active, but the

signal pulse from the TP always lasts exactly five seconds.
Therefore, the output of the TON is always FALSE. We can
connect whatever logic to the TP, and the actual signal will
always pass through unchanged. (We also used this logic
in [21] to prove certain points.)

OR
Actual
. —>» BOOL — BOOL
logic
] TP TON
Fake
oo > BOOL N Q N Q
[J
ogic T#5s—PT ET| T#5s—PT ET

Figure 7. The output of the TON (on-delay) is always FALSE, so any signal
or logic connected to the TP (pulse) has no effect on the OR output.

Finally, in Fig. 8, the logic is seemingly comparing three
real variables, to check if the values differ from one another.
In a kind of majority vote, the low limit of 4.0 is compared
against the second-smallest (rather than smallest) value, and
the high limit of 5.0 to the second-largest value*. However,
when selected out of three values, the second-smallest and
second-largest are always the same, which cannot simultane-
ously violate both limits. As the AND is therefore always
FALSE, we can connect any kind of confusing logic to the
real number inputs, and the actual signal will always pass
through unchanged.

OR
Actual
. —>»BOOL — BOOL
logic
MAX2 GT AND J’
REAL —_— —
Fake
. —>REAL 5.0
logic
REAL
MIN2 LT
I 40 -

Figure 8. The output of the AND is always FALSE, so any signal or logic
connected to the MAX2 and MIN2 blocks has no effect on the OR output.

4The second minimum (MIN2) and second maximum (MAX2) are not
standard functions defined in IEC 61131-3.

D. Masking in the diagram

Masking is a technique where a function block is hidden
from view by placing it behind another function block. By
suitable placement, it could then be possible to connect the
hidden block so that the connections would seem to be wired
to the block on top.

The standard does not seem to contain any rule or re-
quirement against stacking the blocks on top of one another.
According to section 8.1.4 on representation of lines and
blocks, “[any] restrictions on network topology in a particular
implementation shall be expressed as Implementer specific.”

E. Crossing signal lines

According to section 8 of the standard, the use of letters
or graphic to represent lines connecting the blocks is “imple-
menter specific and not a normative requirement”. Lines “can
be” extended by using a connector. And, again, any restrictions
on network topology “shall be expressed as Implementer
specific.”

In other words, the standard allows the connection lines to
overlap or cross in potentially ambiguous ways. It is up to the
implementer of the programming tool to consider if and how
such connections should be prevented.

Fig. 10 below shows practical examples of how stacking or
crossing the lines in a particular way can visually obfuscate
the logic.

V. PRACTICAL EVALUATION

I evaluated the obfuscation techniques listed in Section IV
by experimenting with five different freely available PLC
programming environments:

1) CODESYS®

2) TwinCAT 3% by Beckhoff

3) Connected Components Workbench (CCW)’ by Rock-
well Automation

4) PC WORX?® by Phoenix Contact

5) GEB Automation’

TwinCAT 3 seems to be based on CODESYS, and the
observations for those two tools are the same.

A. Non-Latin characters in identifiers

Every tested tool prevented the user from using Greek,
Cyrillic or Roman Numeral Unicode characters in identifiers.
Still, we can try a simpler method of replacing uppercase
“O” with zero, or uppercase “I” with lowercase “L”. However,
with the exception of GEB Automation, the tools use different
visualisations which prevent the reader from confusing a user-
specified simulacra block with a standard function block.

As seen in Fig. 9:

Shttps://www.codesys.com/

Shttps://www.beckhoff.com/en-us/products/automation/twincat/

"https://www.rockwellautomation.com/en-us/capabilities/industrial-
automation-control/design-and-configuration-software.html

8https://www.phoenixcontact.com/en-us/products/programming-pc-worx-
express-2988670

%https://www.gebautomation.com/

o In CODESYS (and therefore TwinCAT), many standard
blocks like TON have a graphical icon inside the block
element. The reader will differentiate between TON and
our custom “TON” (with a zero).

e In CCW and PC WORX, the user-specified blocks have
a different color, and an automatically inserted instance
name. The reader will spot that our custom “SIN” and
“DIV” (both with lower-case “L”) are not actually SIN
and DIV.

CODESYS
TON 1 TON 2
TON TON
227 —EN ENC EN ENC
222 —IN gl 227 227 —|IN gl 227
227 —PT ET - 277 227 —{PT ET - 277
CCW PC WORX GEB
oV TON
’ —IN_ a
—PT ET—
SN T DN_6
- TON
SIN
IN SIN ::jN\” —IN QF—
ewvar. _PT E-I-_

Figure 9. With the exception of GEB Automation, user-specified blocks are
clearly distinguishable from standard blocks.

B. Logic hidden in execution control parameters

This technique is possible in every tool except CCW, which
only supports the EN/JENO variables in LD programming.

(Although a standard MUX with just one IN input is
unfortunately not supported in any of the tools. In CCW, the
only options are four or eight IN inputs.)

C. Garbage insertion

The technique is universally applicable to all FBD engineer-
ing tools.

D. Masking in the diagram

All the tested tools prevented the user from placing a
function block on top of another block.

E. Crossing signal lines

In CODESYS (and therefore TwinCAT), the blocks and
their connection lines are placed automatically on the diagram,
and cannot be moved by the programmer.

In CCW, the connection lines have curved angles, and
a line crossing is made explicit with a small jump curve
automatically added to the intersection point. However, it
is still possible to manually position the lines so that the
connections become visually ambiguous (see Fig. 10).

In PC WORX, the connection lines are drawn automatically,
and their overlapping is not possible. A small arrow appears

in lines where data is flowing upwards, further preventing
obfuscation attempts (see Fig. 10).

GEB Automation allows the user to manually and very
flexibly wire the block connections in potentially confusing
ways (see Fig. 10).

CCW

GEB

I
HE

Figure 10. Ambiguous connection lines are possible in CCW and GEB
Automation, but not in PC WORX.

PC WORX

VI. DISCUSSION
A. The applicability of the techniques

The practical evaluation was limited to five PLC program-
ming tools, of which two proved to be practically identical.
Still, this set was sufficient for demonstrating that:

1) Different programming tools have differing, mostly suc-
cessful mechanisms in place to prevent the programmer
from deliberately introducing ambiguity.

2) Save for masking, every technique proved applicable in
at least one tool.

The only caveat of the limited set of evaluated tools is that
results do not indicate if the non-Latin character or masking
techniques are applicable in any available tool. As a substitute
for the non-Latin character method, the zero-for-O or I-for-1
replacement is still feasible in, at least, GEB Automation.

Garbage insertion is the most generally applicable method,
and also the only method listed here that is both well-known
and not specific to FBD or a similar visual programming
language.

Of the tools, GEB Automation allowed us to apply the most
techniques.

B. Formal verification as a supportive tool

An engineer purposefully obfuscating a program can use
formal verification (by means of model checking) to prove
that the transformed logic shall always exhibit the intended
behaviour. For a simple example, let us verify that the patterns
in Section IV-C work as we intend.

For each pattern, we can use Linear temporal logic
(LTL) [20] to state: G(BOOL_IN « BOOL_OUT) (i.e., the
output shall always have a value equivalent with the “actual”
input). For the logic in Fig. 7, we can also specify: G -“TON.Q
(i.e., the output of the TON shall always be FALSE). Similarly,
for the logic in Fig. 8: G ~AND.OUT.

We can then use a model checker like NuSMV [22] to prove
those properties for a model of the logic.

(Alternatively, we can try and prove the Computation tree
logic (CTL) [20] property: AG EF TON.Q (“always-globally

exists-finally” a state where TON.Q is TRUE), which will
result in a counterexample because TON.Q indeed can never
be TRUE. (See also [19].))

The exemplar NuSMYV input files are found in the annex.

C. Further work

The garbage insertion technique requires the programmer to
come up with superfluous logic built to just confuse a reader.
This technique could benefit from code synthesis, where the
FBD program is automatically generated based on, e.g., formal
property specifications [23]. A range of techniques for FBD
synthesis is discussed in [24].

The concern with synthesis is that automatically generated
block diagrams are not necessarily acceptable as such [23]
or easy to understand [24]. From our point of view, this is
not a limitation but a benefit. Accordingly, a topic for future
work would be the automatic generation of a FBD program
as confusing as possible.

Motivated by [2], the applicability of abusing conditional
and conditional jumps in FBD programs might warrant further
study.

As Lopes points out in [13], the automatic translation of a
program from, e.g., LD to SFC can at least partially obfuscate
the logic. Accordingly, a tool-supported approach where the
logic is translated many times between several languages (and
then finally back to FBD) could assist in obfuscation.

VII. CONCLUSION

Stuxnet [4] and other successful attacks have shown that
isolation from the Internet and use of dedicated devices are
insufficient means to protect critical industrial systems from
insertion of malware that can modify PLC code. Protection
against novel cybersecurity threats is challenging due to the
sheer number of bad actors striving to find every obscure
means of attack. (Think the data on your computer is safe
because you are not connected to any network? How about
a piece of malicious code regulating the rotation speed the
chassis fan to encode data in the sound heard over air? [25]).

Accordingly, the obfuscation of FBD programs is not a
topic to dismiss, even (1) if the FBD programming tools can
prevent the most obvious techniques, (2) rigorous verification
will reveal unwanted program behaviour, dead code, etc., and
(3) the whole topic might seem far-fetched upon first thought.

On a more positive note, obfuscation techniques are also
worth exploring due their usability in protecting the intellec-
tual property of 1&C software engineers and companies, or to
prevent any attacker from understanding a program they have
managed to access without authority.

My work has shown that (1) developers of FBD program-
ming tools need to pay attention to preventing the abuse of the
language, and (2) there could be a need to clarify the rules in
the next edition of IEC 61131-3 to prevent such abuse.

ACKNOWLEDGMENT

The ideas behind Section IV-B were partially inspired by
Tom Murphy VII’'s work on logic gates [26]. The patterns

in Section IV-C are not my own invention, so I would
like to credit the 1&C engineers who came up with them
unintentionally.

[1]

[2]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

REFERENCES

C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation - tools for software protection,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 735-746, 2002.

K. Yang, X. Lin, and L. Sun, “CShield: Enabling code privacy for
cyber—physical systems,” Future Gener. Comput. Syst., vol. 125, pp.
564-574, 2021.

S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mikeld, J. Holvitie,
S. Hyrynsalmi, and V. Leppdnen, “Diversification and obfuscation
techniques for software security: A systematic literature review,” Inf.
Softw. Technol., vol. 104, pp. 72-93, 2018.

T. M. Chen and S. Abu-Nimeh, “Lessons from Stuxnet,” Computer,
vol. 44, no. 4, pp. 91-93, 2011.

A. Di Pinto, Y. Dragoni, and A. Carcano, “TRITON: The first ICS
cyber attack on safety instrument systems,” in Proc. Black Hat USA,
Aug. 2018.

IEC, “Programmable controllers — part 3: Programming languages, Ed.
3.0,” International Electrotechnical Commission, IEC Standard 61131-
3:2013, 2013.

S. Banescu and A. Pretschner, “Chapter five - a tutorial on software
obfuscation,” ser. Adv. Comput., A. M. Memon, Ed., 2018, vol. 108,
pp- 283-353.

A. Pakonen, I. Buzhinsky, and K. Bjorkman, “Model checking reveals
design issues leading to spurious actuation of nuclear instrumentation
and control systems,” Reliab. Eng. Syst., vol. 205, p. 107237, 2021.
PLCopen. (2023) Status IEC 61131-3 standard. [Online]. Available:
https://plcopen.org/status-iec-61131-3-standard

N. Zubair, A. Ayub, H. Yoo, and I. Ahmed, “Control logic obfuscation
attack in industrial control systems,” in Proc. CSR, July 2022, pp. 227-
232.

Y. Ishigaki, N. Fujieda, Y. Matsuoka, K. Uyama, and S. Ichikawa, “An
obfuscated hardwired sequence control system generated by high level
synthesis,” in Proc. CANDAR, Nov. 2017, pp. 323-325.

M. Schwartz, J. Mulder, A. R. Chavez, and B. A. Allan, “Emerging
techniques for field device security,” IEEE Secur. Priv., vol. 12, no. 6,
pp. 24-31, 2014.

V. Lopes, “Converting LD to SFC (IEC 61131-3),” Ph.D. dissertation,
Univ. Porto, July 2017. [Online]. Available: https://hdl.handle.net/
10216/105445

[14]

[15]

[16]

(171

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin, “IP
protection and supply chain security through logic obfuscation: A
systematic overview,” ACM Trans. Des. Autom. Electron. Syst., vol. 24,
no. 6, Nov. 2019.

K. Zamiri Azar, H. M. Kamali, S. Roshanisefat, H. Homayoun, C. P.
Sotiriou, and A. Sasan, “Data flow obfuscation: A new paradigm for
obfuscating circuits,” IEEE Trans. Very Large Scale Integr. VLSI Syst.,
vol. 29, no. 4, pp. 643-656, 2021.

ISO,IEC, “Information technology — Universal coded character set
(UCS),” International Organization for Standardization / International
Electrotechnical Commission, ISO/IEC Standard 10646:2020, 2020.

N. Nisan and S. Schocken, The Elements of Computing Systems:
Building a Modern Computer from First Principle. The MIT Press,
2015.

Areva NP. (2012) U.S. EPR Protection System, Technical Report
ANP-10309NP, Revision 4. [Online]. Available: https://www.nrc.gov/
docs/ML1216/ML121660317.html

A. Pakonen, “Oops! Examples of I&C design issues detected
with model checking,” in Proc. ISOFIC, November 2021. [Online].
Available: https://cris.vtt.fi/files/53941549/Pakonen_ISOFIC_2021_.pdf
E. Clarke, O. Grumber, and D. Peled, Model checking, 2nd ed. Cam-
bridge, Massachusetts, US: MIT press, 2001.

I. Buzhinsky and A. Pakonen, “Symmetry breaking in model checking
of fault-tolerant nuclear instrumentation and control systems,” [EEE
Access, vol. 8, pp. 197 684-197 694, 2020.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV version 2: An
opensource tool for symbolic model checking,” in International Confer-
ence on Computer-Aided Verification (CAV 2002), ser. LNCS, vol. 2404.
Springer, 2002.

J. Yoo, S. Cha, C. H. Kim, and D. Y. Song, “Synthesis of FBD-
based PLC design from NuSCR formal specification,” Reliab. Eng. Syst.,
vol. 87, no. 2, pp. 287-294, 2005.

M. Weil3, P. Marks, B. Maschler, D. White, P. Kesseli, and M. Weyrich,
“Towards establishing formal verification and inductive code synthesis
in the PLC domain,” in Proc. INDIN, July 2021, pp. 1-8.

M. Guri, Y. Solewicz, and Y. Elovici, “Fansmitter: Acoustic data
exfiltration from air-gapped computers via fans noise,” Computers &
Security, vol. 91, p. 101721, 2020.

T. Murphy, VII, “NaN gates and flip FLOPS,” in Proc. SIGBOVIK, April
2019, pp. 98-102.

