
                                                                                                                                                                  Automaatiopäivät23 2019 
----------------------------------------------------------------------------------------------------------------------------------------------------------- 

Proceedings
ISBN 978–952-5183-54-2

Learning compliant assembly skills from human demonstration

Markku Suomalainen and Ville Kyrki

Abstract—Robotic assembly is mainly used inside factories
where both the environment and the task for each robot stays con-
stant and the batch sizes are large, with car factories presenting a
prime example. However, in manufacturing Small and Medium-
sized Enterprises (SMEs) or construction yards the level of
automation is very low, mainly due to the changing environment
causing two major problems for robots: firstly, the programming
of robots is often difficult and thus it can take too long to make
the same robot perform multiple tasks interchangeably. Secondly,
the use of robots with traditional control methods requires an
accurate model of the environment, which can be either costly to
acquire and prone to accidental changes in the real environments
(SMEs) or simply infeasible (construction). To enable the use of
robots in new environments, robots must be easy to teach and
able to adapt to small changes in the environment. In this paper
we propose methods to use Learning from Demonstration (LfD)
with compliant motions to facilitate the usage of robots in new

environments.
I. INTRODUCTION

The strenuousness of programming a robot to perform dif-
ferent tasks is a major reason holding back the widespread use
of robots in industry and at people’s homes. Industrial robots
are mainly used only when the same product is manufactured
for long periods of times. One of the next places where
the usage of robots can really increase is enterprises where
production batches can be small. But to enable this step,
domain experts must be able to teach the robots the required
task, such that a robotics expert is not required at the stage
every time the robot needs to learn a new task or fails at

completing a taught task.
Learning from demonstration (LfD) is an established

paradigm in robotics, where the goal is easily programmable
robots. In short, the idea is to show the robot an example
of a skill, which the robot learns to reproduce and generalize
into other locations and similar situations. Methods to show an

example include e.g. kinesthetic teaching (holding a gravity-
compensated robot and leading it through the motions) and
teleoperation. However, traditional LfD techniques struggle
with compliant motions, which are required in many industrial

assembly tasks.
In this paper we propose to use LfD with compliant motions

to overcome the aforementioned problems. In LfD the user
can show the robot how to perform a required task, using
either teleoperation or kinesthetic teaching where the teacher
physically holds a gravity-compensated robot and leads it
through the desired task. We developed methods to ease the
use of compliance on three different levels in programming
a robot: on the control level, on the primitive level and
on the motion sequencing level. On the control level, we
propose using impedance control for cases where both the
manipulator and object are ground based. On the primitive
level we present a new impedance control– based motion

(a) Position alignment.

(b) Orientation alignment

Fig. 1: Compliant motions can be used for aligning both
position and orientation of a workpiece [1]

primitive which can be used to learn and encode motions that
use the environment to mitigate pose uncertainties– humans
naturally have the skill to exploit contact forces in insertion
tasks, and we want to convey the skill from human to robot
in an efficient way. On the motion sequencing level we first
show how a complex human demonstration can be segmented
into phases, each of which can be modelled with the primitive.
Then we present how the primitives can be sequenced online
to successfully reproduce the task. Additionally, we show that
the presented motion primitive can also be applied effectively
for bimanual assembly tasks. Finally, we present how to learn
from human teachers search motions similarly as a human
inserting a plug into a socket in darkness, which can be used
as efficient exception strategies in assembly. To conclude, this
paper presents a framework that can accelerate the degree
of automation in tasks where currently the use of robots is
infeasible.

This paper is an overview of seven publications by the
authors following the aforementioned paradigms, and the
mathematical details of the methods can be found from those
publications. In [2], we learned desired direction and axes of
compliance for a motion by assuming we can directly measure
the direction of the force which the human teacher applies
to the robot in kinesthetic teaching. However, we noticed
that this assumption only holds true for certain force/torque
sensor configurations, and hence we wanted to solve also
the more general problem, where we can only measure the
force between the end-effector and the environment. We solved
this problem in [3], with the observation that in a compliant
sliding motion there is always a certain sector of directions
from which the robot can apply force to perform the observed
motion. We managed to take the intersection of these sectors in
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a 3-D motion, over one or more demonstrations, and thus learn
the parameters for a dynamically linear compliant motion. In
[1] we generalized the task to work with rotational motions as
well. Furthermore, in [4] we learned how to sequence these
motions to perform a full task, such as pipeline assembly. To
make the robots more independent even in case of changes in
the environment, in [5] we looked into whether a robot could
learn to search using contact forces, similarly as a human tries
to fit a key into the keyhole in darkness. Finally, in [6] we
showed that our method can be applied to dual-arm tasks and
examined the role of compliance in dual-arm assembly with a
little more detail. Additionally, to show that the method from
[3] is robust enough to work with systems where errors in
measurements can be higher, we combined the method with
a stability-guaranteed Virtual Decomposition Control- based
impedance controller for a heavy-duty hydraulic manipulator
with a 475kg payload [7].

II. METHOD

To make a robot execute a task, the task must be represented
in a manner that is understandable for the robot, often called
a policy consisting of primitives each of which models a
phase of the task, such as shown in Fig. 2b where moving
the block to touch the table is one phase and moving it into
the corner is another. In this chapter we consider modelling
and learning from a human demonstration a single phase of
such a policy. This is the continuous level of a hierarchical
policy, and the simplest examples of this sort of behaviour
for modelling a trajectory are splines [8] or Bezier curves
[9]. If the task requires contact with the environment, the
simplest approach is to augment the trajectory with a force
profile consisting of forces the robot should apply to the
environment at each position. The obvious downside of this
kind of representation is that even small changes in the
environment or in the robot’s coordinate system can easily
cause the task to fail. Thus simply recording the trajectory and
forces from a human demonstration and replaying them is not
a valid LfD strategy. There exist more general and popular
primitives than the simple trajectory encoders mentioned that
are used nowadays to represent tasks learned from human
demonstrations. However, especially when trying to learn how
to take advantage of the environment with compliant motions,
there are certain downsides in the currently popular motion
primitives.

Perhaps the most recognized primitives used currently in
LfD are Dynamic Movement Primitives (DMP) [10] and Gaus-
sian Mixture Model (GMM) with either Gaussian Mixture
Regression (GMR) [11] or Stable Estimator of Dynamical
Systems (SEDS) [12]. Strengths of the DMPs include the
ability to be learned online and that they can be coupled with
wrench or impedance profiles. These attributes, along with
the simplicity, make DMPs a popular choice for learning and
encoding complicated trajectories. Additionally, with correctly
chosen gains DMPs can be shown to be stable, and DMPs have
been shown to be generalizable through task-parametrization
to new situations [13], [14] by simply modifying a parameter

(a)

(b)

Fig. 2: Compliant motion policy used (a) to align workpieces
and (b) to place a box at the corner of the table [4].

relevant to the current task. A downside of DMPs is that to
learn from multiple demonstrations, tools such as Dynamic
Time Warping (DTW) [15] need to be used to temporally
align the demonstrations. Especially with more than two
demonstrations this becomes a tedious task.

Similarly to DMPs, GMMs can be task-parametrized and
augmented with a wrench profile. SEDS uses GMMs as well
to model the task, but due to the use of a dynamical system, the
stability can be guaranteed with correctly chosen parameters,
unlike when using the statistical methods in GMR. SEDS has
also been used to produce impedance to allow compliant mo-
tions [16]. The main downside of all these methods when used
for compliant motions is the tight coupling of the trajectory
and force profile, which makes the methods susceptible to pose
uncertainties and makes taking full advantage of compliant
difficult. Thus we propose new methods to efficiently learn
robust compliant skills from human demonstrations.

A. Linear Motion with Compliance

In this section we present the approach called Linear Motion
with Compliance (LMC), which was gradually developed in
[1]–[3] and used successfully as a component in [4], [6], [7].
The key idea is that we model a task as a sequence of linear
motions with compliance such that we take advantage of the
environment to guide and align the tool, as shown in Figs. 2
and 1. We assume that many workpieces have a mechanical
gradient such as depicted in Fig. 3, which can be used to guide
workpieces into alignment. The problem we address is the
following: how to learn from human demonstration a task such
that the convergence region, i.e. the set of starting poses from
which alignment with a same set of parameters is successful,
is maximized. Thus the uncertainties related to the relative
pose between the workpieces to be aligned can be efficiently
mitigated. Such uncertainties can rise from, for example, small
modifications to the environment or simply the uncertainty of
grasping an object. To clarify this even further, let us consider
the situation in Fig. 3 and assume that the goal is to slide the
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Fig. 3: Illustration of the theoretical convergence region (black
brace) of the algorithm in a pure translational case [1].
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Fig. 4: An impedance controller with F/T feed-forward is used
to reproduce the search motions [5].

tool to the bottom of the valley. The error in translation is
the horizontal difference between the orange tools tip and the
center bottom point of the valley. Now, if the tool is sliding
directly downwards from anywhere within the convergence
region and the tool is compliant perpendicular to this motion,
it will slide along the surface all the way to the bottom.

We use impedance control to reproduce the motions.
Impedance control is defined as

FFF = Kf (xxxd − xxx) +Dfvvv +FFF f

TTT = Ko(βββd − βββ) +Doωωω + TTT f
(1)

where FFF ,TTT are the force and torque used to control the robot,
xxxd the desired position, xxx the current position, βββd the desired
orientation, βββ the current orientation, Kf and Ko stiffness
matrices and Dfvvv and Doωωω linear damping terms. Parameters
FFF f and TTT f are the superposed feed-forward force and torque,
which can be used if additional implicit force on top of the
standard impedance controller is required. The block diagram
of the controller is shown in Fig. 4.

Thus, now if we analyse (1), we see two parameters on
both translations and rotations that must be adjusted to provide
this sort of behaviour: the stiffness matrices Kf ,Ko and the
desired position and orientation xxxd,βββd. As observed, with
efficient exploitation of compliance linear motions suffice to
achieve assembly goals in scenarios such as in Fig. 3: thus,

we can write the the desired position xxxd and orientation βββd in
a feed-forward manner as

xxxd,t = xxxd,t−1 + ν∆tv̂∗d̂v
∗
d̂v
∗
d

βββd, t = βββd,t−1 + λ∆tω̂∗
dω̂
∗
dω̂
∗
d

(2)

where v̂∗d̂v
∗
d̂v
∗
d and ω̂∗

dω̂
∗
dω̂
∗
d are the desired directions describing the

human teachers intended motion in translation and rotation,
∆t the sample time of the control loop and ν and λ the
translational and rotational speeds.

B. Learning the LMC primitive

In this section we explain the process of learning the pa-
rameters v̂∗d̂v

∗
d̂v
∗
d ,ω̂∗

dω̂
∗
dω̂
∗
d , Kf and Ko such that the conditions described

in the previous section are met. The data required for learning
are the measured Cartesian poses of the end-effector and the
corresponding wrenches measured by the Force-Torque sensor
(F/T sensor) according to Fig. 5 from a human demonstration.

Fig. 5: Forces recorded by an F/T sensor when sliding along
a surface. va is the actual velocity, Fext the force applied by
the teacher and s the sector of desired directions [1].

A general flow of the learning process is shown in Fig. 6:
the pitch, i.e. the relation between mean translational speed of
the demonstration ν and rotational speed λ, must be computed
first from the raw data. After this, the same steps are taken
for both translational and rotational motions: the first thing is
to check if the teacher keeps either translations or rotations
3-Degree of Freedom (DoF) compliant, i.e. either position or
orientation can change freely without affecting the execution
of the task. Whenever this is not the case, the next thing is
to check whether the teacher intentionally translated or rotated
the tool, i.e. check the existence of v̂∗d̂v

∗
d̂v
∗
d and ω̂∗

dω̂
∗
dω̂
∗
d . If either or both

exist, the compliant axes must be deduced such that they are
perpendicular to the desired direction, otherwise the compliant
axes can be directly deduced from the data. Finally, if both
v̂∗d̂v
∗
d̂v
∗
d and ω̂∗

dω̂
∗
dω̂
∗
d exist, ν and λ must be set according to the pitch,

finalizing the LMC primitive.
The intuition into 3-DoF compliance can be observed from

Fig. 7: the teacher tries to only rotate the tool, but due to con-
tact forces, rotational force causes also translation in the wrist.
In this case observed translation is caused completely by the
environment and the corresponding degrees of freedom need
to be set compliant (i.e. 3-DOF compliance). To numerically
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Fig. 6: A flowchart describing the whole process of finding the
6-D compliant primitive to reproduce a demonstrated motion
[1].

Fig. 7: A demonstration of rotating the peg around the edge
of the table, where the teacher only rotates the tool and the
translational motion in the wrist is caused by the contact
forces. The edge of the table is highlighted in red [1]].

detect this, we looked whether more work was done by the
environment or the teacher, where work in physics is defined
as

Wx = FFFm ·∆xxx
Wβ = TTTm ·∆βββ

(3)

where W is the work, ∆xxx the change in translation, ∆βββ
the change in angle and FFFm and TTTm the force and torque
measured by the F/T sensor. The idea is that when the
work measured at an interval is positive, the environment has
done the work since the forces and torques are caused by
the environment. By comparing the amount of positive and
negative work measured we can deduce whether the teacher
or the environment did more work to move the tool.

The idea for learning the desired direction stems from Fig. 5,
where the forces acting on a tool sliding along a surface are
shown. The key is to observe sector s, which marks the 2-
D sector between the actual direction of motion vavava and the

Fig. 8: Illustration of expanding 2-D sector s from Fig. 5
for translations into 3-D set of directions. Continuous lines
represent the vectors and dotted lines highlight the pyramid
shape [1].

negative of the force measured by the F/T sensor, −FmFmFm.
Firstly, we observe that the width of this sector depends on the
friction force FµFµFµ such that with higher friction force the sector
s becomes more narrow. Secondly, if the external force, FextFextFext
is applied from anywhere within sector s, the observed motion
will be exactly the same, along the direction of vavava. This gives
us, at every time instant, a range of directions from which
the robot can apply force to achieve a certain motion. We
hypothesize that by computing an intersection of these sectors
s during a demonstration consisting of sliding motions, we
can find the desired direction v̂∗d̂v

∗
d̂v
∗
d where the human intends to

push the tool, and the same logic can be applied to rotations
to find ω̂∗

dω̂
∗
dω̂
∗
d .

To transfer this intuition into 3-D, several steps are required.
Firstly, there is always uncertainty in a humans demonstration,
even if the teacher tries to draw a straight line. Thus, there is
a risk that taking an intersection results in an empty set. In
Fig. 8 is shown how we propose extending the sector s from
Fig. 5 into a pyramid shape in 3-D. These pyramid shapes
are then projected into 2-D and an intersection is calculated
with suitable outlier rejection. If more than one demonstrations
are supplied, the intersection is simply computed from a
concatenation of the demonstrations.

The next step in Fig. 6 is finding the compliant axes. The
first question in this process is, separately for translations and
rotations, whether the desired direction was observed. If it
was, this already reduces the dimensionality of the possible
compliant axes by one, since the compliant axes must be
orthogonal to desired direction as per Condition ??. The
key idea for finding the compliant axes for reproducing the
observed motion from the remaining DoFs is the following: if
motion along other directions besides the desired direction was
observed, it must have been caused by the environment, and
thus compliance is required to replicate the motion. Without
a desired direction, we assume that all motion is caused by
the environment. Thus, when the desired direction exists, we
first subtract it from the raw motion data before advancing,
and then the compliant axes are computed similarly for the

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

105



                                                                                                                                                                  Automaatiopäivät23 2019 
----------------------------------------------------------------------------------------------------------------------------------------------------------- 

Proceedings
ISBN 978–952-5183-54-2

cases where desired direction exists and where it does not.
To compute comparable values, we take inspiration from
the Bayesian Information Criterion (BIC) [17] to choose the
correct number of compliant axes.

C. Learning search motions

In Section II-A we made the assumption that there is a
physical gradient, such as a chamfer, that can guide the robot’s
tool into the goal pose. However, it is often the case that
this sort of guidance is not available and the environment
surrounding the goal pose cannot be exploited to mitigate
uncertainties. Even in such a case a human still can have
task-dependent intuition of how to efficiently locate the goal–
a human might, for example, use a different strategy for
fitting a key into a lock than inserting an electric plug into a
socket. It would be highly useful if this sort of task-dependent
information could be directly conveyed to the robot from a
human demonstration– in industry this sort of search could be
used as an exception strategy in case of a failed task due to
error in the environment model.

The existing work on exception strategies for assembly
tasks is very limited. Abu-Dakka et al. [18] used random
walk in case an assembly task failed and searching had to
be done. Jasim et al. [19] used an Archimedean spiral, which
is guaranteed to find the goal with the correct resolution and
starting position. However, the spiral is limited to 2-D case and
randomness is something to be used as a baseline for better
methods. Kronander [20]Chapter 5 used incremental learning,
where the human assists the robot during insertion if the robot
gets stuck. However, none of these methods took advantage
of any intuition a human may have on the tasks at hand.

The approach in this paper is to not assume any contact
that can help guide the search, either for guiding or localiza-
tion purposes, meaning that no earlier experience with this
particular plug pose is expected and no visual or auditory
sensor input is allowed. Gathering such demonstrations from
a human is non-trivial, and we managed this by blindfolding
the teacher and varying the relative pose between the start
of the demonstrations and the goal. Essentially, there are two
things we can learn from the human from such a demonstration
without further assumptions: the area in which to search, and
the dynamics of the in-contact motions. We call the area
to search the exploration distribution, which we learn by
fitting a Gaussian to the teacher’s search trajectory. As the
proposed method is for use in environments where the location
information can be erroneous, we regard the information
conveyed by the exploration distribution and recorded forces
as more important than the starting location of the search.
Thus we set each search into a common coordinate frame,
which in this thesis is called the search frame. Furthermore
we choose to align the demonstrations based on their origin,
not the goal, even though in the world coordinate system they
share the goal but not the origin. With this choice we can
better learn the search strategy of the teacher in situations
where localizing the tool w.r.t the world frame is impossible.

D. Learning Sequence of Motions

In this chapter we address segmenting a demonstrations
into phases, each of which is used to learn a single LMC
primitive, and then during execution a correct primitive must
be chosen at a correct moment– a single primitive is often
insufficient to encode a whole task, and thus the primitives
must be sequenced to be useful in real-life tasks. We show
that LMC primitives can be successfully combined to perform
assembly skills, such as attaching hose couplers together. As
LMC depends neither on time nor pose, the length of a single
primitive does not need to be known beforehand, which brings
more flexibility and error tolerance– however, the price of
that flexibility is that an additional algorithm is required for
learning to detect these changes.

Intuitive approaches for segmenting human demonstrations
into phases are often simple heuristics, such as Zero-Velocity
Crossing (ZVC) (i.e. a change of direction in velocity) or
threshold values in contact force. However, this sort of simple
heuristics are often not error-tolerant and have to be manually
designed for each task. At the other end of spectrum in
complexity are usage of multimodal inputs including vision,
which can then yield impressive results in, for example,
success detection in screwing [21]. However, we use strictly
pose and wrench signals acquired from a demonstration since
we do not want to depend on vision due to challenges in
occlusion and accurate detection of contact.

In this paper the goal is to segment synchronized pose and
wrench recordings from human demonstrating an assembly
task into segments, each consisting of a single LMC primitive
presented in Section II-A. Equations (2) and (1) defining LMC
inspired us to model the state dynamics of a single phase by
a linear Gaussian model, in which the next state depends on
current state s (pose or a subset), measured interaction (wrench
or a subset) a concatenated with value 1, and current phase ρρρ,
where each phase consists of a single LMC– an example of
what a phase can look like is seen in Fig. 2. Thus, we write
p(st+1|st,at, ρρρt). The distribution of the next state is then

st+1 ∼ N (Aρρρtst +Bρρρtat,Σρρρt) (4)

where Aρρρt ∈ Rm×m represents the uncontrolled dynamics,
Bρρρt ∈ Rm×d models compliance through interaction forces
and constant offset velocity through the concatenated 1, and
Σρρρt ∈ Rm×m is the covariance matrix corresponding to phase
ρρρt. Thus, the model assumes linear system dynamics and
Bρρρt is used to model contact interaction effects and constant
desired direction of motion. This model is used for detecting
the correct phase, but the actual control is performed with
LMC.

An inspiration for the segmenting approach of this work was
the work of Kroemer et al. [22], who use an autoregressive
state space model together with an Hidden Markov Model
(HMM) to segment a demonstration: essentially, their idea is
that each phase depends on the previous phase and previous
state, i.e. p(ρρρt|st, ρρρt−1). However, as we are modeling com-
pliant in-contact motions while assuming pose uncertainties,
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depending on the pose for phase changes is not desirable.
Thus, we use the graphical model depicted in Fig. 9 with
p(ρρρt|at, ρρρt−1) such that each phase depends on the previous
phase and previous action to better take into account the
compliant nature of the task being modelled. For learning
the model, we adapt the Expectation-Maximization (EM)
algorithm from [22] to learn from multiple demonstrations the
model parameters θ = (w,A,B,Σ). During reproduction, we
take advantage of the joint probabilities to choose the correct
primitive.

Fig. 9: The graphical model we used for segmenting the
demonstration [4].

III. EXPERIMENTS AND RESULTS

We tested our approaches on various tasks and setups. On
the hose-coupler setup in Fig. 12 we performed experiments
on the LMC primitive and combining primitives. On the peg-
in-hole setup shown in Fig. 15 we tried the LMC primitive
both on single and dual arms and also the search. Additionally,
we performed search experiments on a plug-and-socket setup
shown in Fig. 10 and used LMC with a heavy-duty hydraulic
manipulator shown in Fig. 11.

In the hose-coupler setup we defined both the Tool Center
Point (TCP) and the Center of Compliance (CoC) in the
flange of the robot to achieve rotational compliance around the
flange and to observe the translations occurring at the flange
when the orientation of the tool changes. In this task there
is a high likelihood of orientation error when commencing
the task due to difficulties in pose estimation, with examples
shown in Fig. 12. We showed that with one desired direction
and a correctly identified stiffness matrix the hose couplers
can be aligned with the same set of parameters starting from
both Figs. 12a and b and ending up in Fig. 12c after two
demonstrations from different starting positions.

In the hose-couple alignment task, for translations a desired
direction is found, but for rotations it is not– visualization
of the rectangles representing the limits of desired direction
at each time interval are shown in Fig. 13, where the red
rectangles are from a demonstration starting from the pose of
Fig. 12a and the blue ones from Fig. 12b. It can be observed
that for translations the rectangles from both demonstrations
are aligned, but for rotations the two demonstrations are clearly

Fig. 10: An example sequence of a robot inserting a plug into
a socket without vision sensing [5].

separate, leading to the conclusion that a desired direction for
translations is required but for rotations there is not a desired
direction.

Finding the number of compliant axes is visualized in
Fig. 14, where each blue cross represents the mean directions
of motion of a demonstration and the red axes are the axes
of Principal Component Analysis (PCA) performed on all
mean directions of a demonstration. Since for translations there
exists a desired direction, it is plotted in cyan (overlapping
the first PCA axis, as expected) and subtracted from the mean
direction of motion data, i.e. the blue crosses are projected into
the plane of the other principal axes, resulting in the green
crosses. Now it can be observed that one of the principal
components connects the green crosses, thus explaining the
observations and resulting in choosing one compliant axis
along that component. As the TCP was set in the flange,
translation is required to perform the alignment. For rotations,
the analysis is done directly on the PCA data, as there is no
desired direction. It can be observed that the rotations are close

Wooden 

pallets
Styrofoam 

sheets

a) b)

{B} {B}

Fig. 11: a) Experiment setup with wooden pallets. b) Exper-
iment setup with styrofoam sheets and wooden pallets. The
manipulator’s position in the figures show the starting point
of the test trajectories (same starting position in the both cases)
[7].
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(b)

(c)
Fig. 12: Two possible starting poses and the final pose of the

hose-coupler alignment task [1].

(a) Translations (b) Rotations

Fig. 13: Visualization of finding the desired direction, shown
for translations and rotations of the hose-coupler alignment
task. The red and blue colors indicate the two separate demon-
strations of the task and the black rectangle is the intersection,

the set of all desired directions in the projection coordinate

to the origin, but still far enough that one compliant axis was

detected, as required to align the tools.
We experimentally verified that we can successfully re-

produce the alignment motions. Additionally, we showed
successful learning and reproduction of a peg-in-hole task
with a varying starting orientation error. Screenshots from
a reproduction are shown in Fig. 15. Moreover, we also
showed that this primitive can be successfully used with
teleoperated demonstrations, which are shown to be noisier
than by kinesthetic teaching [23] with a heavy-duty hydraulic

(a) Translations (b) Rotations

Fig. 14: Illustrations of choosing the directions of compliant
axes on the hose-coupler alignment experiment. The black
arrows are coordinate axes, the red ones the eigenvectors U,
the blue crosses the average motions of each demonstration
and the green crosses their projections to the first principal
component. In (a) the desired direction is plotted in cyan
(overlapping the third eigenvector as expected). In both (a)
and (b) 1 compliant axis is chosen [1].

Fig. 15: Screenshots from a reproduction video of the P-I-H
motion. The motion starts from the leftmost picture, and the
peg is rotated and pushed to the bottom. The peg has radius
16.5 mm, length 80 mm and a rounded tip, and the hole’s
radius is 0.25 mm more than the peg’s [1].

We performed the search motions on the peg-in-hole setup
with 85% accuracy and the plug-in-socket task with 67%
accuracy, which we consider good considering the difficulty
of the tasks (essentially a near-blind search in 2-D or 3-
D). In Fig. 16a is shown how the exploration distribution
is learned from human demonstration, and in Fig.16b how
a search trajectory is created from the exploration distribution
by sampling.

We tested segmenting and sequencing of motions on both
the hose-coupler setup (Fig. 12) and valley setup seen in
Fig. 17a. In the hose-coupler setup, the algorithm correctly
identified lowering the coupler as one LMC phase and inter-
locking the couplers as another and reproduction was success-
ful. In the valley setup, the algorithm correctly identified that
sliding down either side is the same phase, as seen in Fig. 17b,
thus showing that the robot learned to take advantage of the
guidance of either chamfer.
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(a) Demonstration and explo-
ration distributions.

(b) Exploration distribution and
search trajectory.

Fig. 16: Visualizations of creating a search trajectory from one
or more human demonstrations.
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Fig. 17: The physical valley setup (a) and the phases learned
from a demonstration of sliding to the bottom of the valley
and then towards the camera (b).

IV. CONCLUSIONS

We successfully showed that we can learn from human
demonstrations various tasks requiring compliance. The results
from [2]- [7] can be used to greatly advance the usage of
robots in SMEs by three very important factors: firstly, the
usage of LfD makes teaching the robot new tasks easy and
efficient, thus allowing the robot to perform varying tasks
when production batch sizes are small. Secondly, by the
use of compliance, small changes in the workplace due to
e.g. vibrations may not cause the task to fail. Thirdly, even if
the task fails, if a proper exception strategy is learned with
the search, the robot can recover even from errors by itself
and carry on it’s task without need of an employee to re-teach
everything. We believe that these results have the potential to
significantly boost the usage of robots in Finland.

REFERENCES

[1] M. Suomalainen and V. Kyrki, “Learning 6-d compliant motion
primitives from demonstration,” Autonomous Robots, 2019, submitted.
arXiv:1809.01561.

[2] M. Suomalainen and V. Kyrki, “Learning compliant assembly motions
from demonstration,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 871–876, IEEE, 2016.

[3] M. Suomalainen and V. Kyrki, “A geometric approach for learning com-
pliant motions from demonstration,” in Humanoid Robots (Humanoids),
2017 IEEE-RAS 17th International Conference on, pp. 783–790, 2017.

[4] T. Hagos, M. Suomalainen, and V. Kyrki, “Segmenting and sequencing
of compliant motions,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 6057–6064, IEEE, 2018.

[5] D. Ehlers, M. Suomalainen, J. Lundell, and V. Kyrki, “Imitating human
search strategies for assembly,” 2019 IEEE International Conference
on Robotics and Automation (ICRA), 2019, Accepted for Publication.
arXiv:1809.04860.

[6] M. Suomalainen, S. Calinon, E. Pignat, and V. Kyrki, “Improving dual-
arm assembly by master-slave compliance,” in 2019 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2019, Accepted
for Publication.
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