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State feedback control of a rotary inverted
pendulum
Abstract: In this paper, we design a state feedback
controller for a rotary inverted pendulum, which is
mounted to a Quanser QUBE-Servo 2 unit. To be
more specific, we use linear quadratic regulator to find
suitable controller gains for QUBE-Servo 2 system.
The essential characteristics of the QUBE-Servo 2 unit
are presented and the performances of the closed-loop
systems are evaluated based on rise time, settling time
and overshoot of the rotary arm’s step response. The
design is validated using simulations and real-time
experiments. The resulting controller stabilizes the
rotary pendulum to upright position and is able to move
the pendulum to desired angular position while keeping
the balance under control.
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1 Introduction
Regulating a link to its upright position is an application
of a mechanical balancing problem. Combined with
a reference tracking, it becomes an exciting problem
for testing various control designs. State feedback is a
widely used method for designing feedback controllers
for linear-time-invariant (LTI) systems. LTI-design
methods take advantage of the well-known theory of
linear algebra to form simple controllers. A classical
method is pole placement which, in theory, results
in closed-loop system with arbitrary dynamics [1]. In
practice, there are always e.g. physical restrictions that
limit the achievable performance of the closed-loop
control system such as parasitic effects and actuator
saturation. Optimization can also be used in line with
LTI-design algorithms to yield an optimal solution
to the problem with given parameters. A well-known
optimal control method is the linear quadratic regulator
(LQR) which is one of the most important results in
modern control theory [2].

Inverted pendulum systems have been studied
extensively in recent years. For example, stabilization
of a real inverted pendulum was studied in [3],
controlling a wheeled inverted pendulum in [4] and
characteristics of the control of a flying inverted
pendulum in [5]. Related topics to the inverted
pendulums were also studied in [6]–[8]. In this paper,
we design state feedback controllers for a rotary
inverted pendulum using the pole-placement and LQR
design methods. The rotary inverted pendulum is
attached to a Quanser QUBE-Servo 2 unit, which
is a small-scale design platform for a variety of
control methods. The characteristics of the system
is captured by single-input–multiple-output (SIMO)
model. The feedback controllers are designed to regulate
the pendulum link to the upright position with carefully
coordinated movements of the DC motor. Feedback
control also enables the rotary arm to turn from one
angle to another. The performance of the designed
controllers are evaluated using the well-known classical
measures such as rise time, settling time and overshoot.

The material of this paper is organized in the
following order. Section 2 presents the pole-placement
method and LQR-control, whereas Section 3 examines
the Smith-McMillan form of the system. In Section
4, we introduce characteristics of the QUBE-Servo
2 unit and the model of the inverted pendulum.
In Section 5, feedback controllers are designed and
the resulting closed-loop control systems are tested
using simulations as well as real-time experiments
with QUBE-Servo 2 system. Finally, some concluding
remarks are summarized into Section 6.

2 State feedback
In this section, a short introduction to state-space
representation and state feedback law are discussed.
In addition, theory of the pole-placement method and
LQR-control are presented.
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2.1 State-space representation

The system considered in this paper is SIMO of the
following form

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = Ax(t) + bu(t)
y(t) = Cx(t),

, x(t0) = x0 (1)

where A ∈ Rn×n is the system matrix, x ∈ Rn is the state
vector, u ∈ R is control input, and vector b ∈ Rn×1.
Output matrix C ∈ Rl×n describes the relationship
between state vector and output vector y ∈ Rl×1, which
includes the angle measurements from the system. The
system (1) is said to be realization (A,b, C).

In this paper, the system (1) is assumed to be
controllable and observable. To be more specific, the
rank of the controllability matrix

rankCk = rank[b Ab A2b ... An−1b] = n (2)

and the rank of the observability matrix

rankO = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= n, (3)

where n is the number of states of the system. When
examining the SIMO-models, realization which is both
controllable and observable is said to be minimal.

2.2 State feedback law

In this paper, state feedback control laws are written by
[1]:

u(t) = Kx(t), (4)

in which u(t) and x(t) are respectively the same input
and state vector as introduced in (1) and K ∈ R1×n is
called a full-state feedback gain. The control law in (4)
assumes that the full state vector is known without any
errors. If there are unknown states, it is mandatory to
use a state estimator to calculate the missing values.
When missing measurements represents rates of changes
of state variables, then simple high-pass filters can be
used to supplement the state such that state feedback
control can be applied. In this paper, the high-pass
filters are of the following form

ωfs

s + ωf
, (5)

where ωf is the cut-off frequency of the filter and s is
the Laplace variable. The filter (5) produces an estimate
for the rate of change of its input signal.

The control law defined by the equation (4) is valid
only with a regulation task. If the control scenario also
includes a reference state vector xr, the closed-loop
system consisting of (1) and (4) with the coordinate
transformation x̃ = x − xr yields [1]:

˙̃x = ẋ = (A − bK)x̃ +Axr. (6)

Therefore, there will always be steady-state error, unless
Axr = 0. The condition Axr = 0 is met when the system
matrix A is singular and the vector xr belongs into the
null space of this matrix, which is the situation in this
paper.

2.3 Pole-placement method

Pole-placement is popular way to design control for
closed-loop LTI-systems. Specifying desired locations of
poles, a designer can ensure stability of the closed-loop
and meet assigned control specifications. In theory, the
closed-loop poles can be placed to arbitrary locations on
the left-half complex plane if the system is controllable
[2, 9]. Desirable places of the poles are achieved by
choosing the correct coefficients to the gain matrix K .

There are a couple of different ways to calculate
the correct value of the state gain matrix based on the
given locations of poles. In this paper, feedback gain
is calculated according to Ackermann’s formula. The
formula states that the state gain matrix K can be
obtained by solving the equation [9, 10]

K = [0 0 ... 0 1]C−1
k α(A) (7)

in which Ck is the controllability matrix from (2) and
α(A) is defined by

α(A) = An + α1A
n−1 + ... + αn−1A + αnI, (8)

where I(n×n) corresponds to (n × n) identity matrix
and coefficients α1, α2, ..., αn can be obtained from the
desired characteristic polynomial

sn + α1s
n−1 + ... + αn−1s + αn. (9)

Ackermann’s formula is feasible, because the system in
this paper is well-conditioned and is of low-order.

2.4 Linear Quadratic Regulator

Linear quadratic regulator uses quadratic cost function
to calculate the values of the state gain matrix K ,
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when the system is controllable [2]. In order to compare
the results of optimizations, one has to declare a cost
function Jk. An infinite horizon quadratic cost function,
which is suitable for SIMO systems is

Jk =
∞
∫
0

xᵀQx + u2R dt. (10)

The vector x and the scalar u are from the state
equation (1), whereas Q ≥ 0 ∈ Rn×n and R > 0 ∈ R
are called weighting matrices [2].

An optimal state feedback gain, which minimizes
the cost function (10) is [1]:

K = R−1bᵀP, (11)

where P > 0 satisfies the algebraic Riccati equation [1]:

AᵀP + PA − PbR−1bᵀP +Q = 0. (12)

The Ricatti equation (12) is non-linear and can be
solved e.g., using eigenvalues of the Hamiltonian matrix
[1].

One can seek suitable weights by examining the
physical characteristics of the system. Another approach
for selecting the weights is trial and error, where initial
selection (guess) is based on prior knowledge of the
similar problems. The above-mentioned method of trial
and error is often used at least in the final selection of
weighting matrices. [1]

3 Transfer function matrix and
Smith-McMillan form

A system’s poles and, in the case of minimal realization
of SIMO-system, transmission zeros can be found
using Rosenbrock system matrix. Despite the usefulness
of the Rosenbrock matrix, it could leave unrevealed
information about the zeros of the system’s transfer
functions, which could cause nonminimal time domain
behaviour. For this reason, a transfer function matrix
is introduced. From the transfer function matrix, zeros
and poles of the system is possible to determine using a
system’s Smith-McMillan form.

The transfer function matrix G(s) ∈ Cl×1 of a
SIMO-system is [11]

G(s) = C(sI −A)−1b (13)

where matrices A, C and vector b are from equation (1).
Poles and zeros of the transfer function from the input

u to lth output can be found in the nominator and in
the denominator of the corresponding element in G(s).

The theorem of the Smith-McMillan form states
that a rational matrix G(s) of normal rank n could be
transformed into a pseudo-diagonal rational matrix [12]

M(s) = diag{ ε1(s)
ψ1(s)

,
ε2(s)
ψ2(s)

...
εr(s)
ψr(s),

0, ...0} (14)

in which polynomials εi(s)
ψi(s) (i = 1, 2, ..., r − 1) have no

common factors and
⎧⎪⎪⎨⎪⎪⎩

εi(s)/εi+1(s)
ψi+1(s)/ψi(s)

(15)

are satisfied without remainder. The diagonal matrix
M(s) is called the Smith-McMillan form of the transfer
function matrix G(s), and in the case of SIMO-system,
it reduces to

M(s) = diag{ ε1(s)
ψ1(s)

} =
⎡⎢⎢⎢⎢⎣

ε1(s)
ψ1(s)

0

⎤⎥⎥⎥⎥⎦
. (16)

3.1 System’s poles and zeros from the
Smith-McMillan form

Poles of the system can be found from the roots of
the pole polynomial of the constructed Smith-McMillan
form. The pole polynomial is defined by denominators
of M(s) as [12]

p(s) = ψ1(s)...ψr(s), (17)

which in SIMO-case only contains the first element
ψ1(s). If the realization is minimal, the pole polynomial
is given by det(sI −A) and the poles are the eigenvalues
of the system matrix A.

In general, when the system is not in the form of
SISO, there is defined different kind of zeros, called
invariant zeros. In the case of minimal realization, the
invariant zeros are the same as transmission zeros.
Transmission zeros are found from the roots of the
zero polynomial of Smith-McMillan form, where zero
polynomial is [12]

z(s) = ε1(s)...εr(s). (18)

In SIMO-case, the zero polynomial is reduced to contain
only the numerator ε1(s) of the fist element of M(s).

4 Quanser QUBE-Servo 2 system
Quanser QUBE-Servo 2 system is a rotary DC motor
application, which can be used as a testbed for
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reference tracking and regulation tasks. It consist of
an Allied Motion CL40 Series 18V brushed DC motor
(model 16705) and a PWM (Pulse-Width Modulation)
voltage-controlled power amplifier, which is used to
power the motor. The PWM accepts commands from
Data Acquisition (DAQ) device. The DAQ is linked
to a PC via USB connection. Quanser also provides
Simulink/Matlab add on (QUARC), which includes
necessary blocks to use the unit with Simulink software.

The rotary inverted pendulum is attached to the DC
motor via magnets. Angular positions of the DC motor
and the pendulum are measured with a single-ended
optical shaft encoder (US Digital E8P-512-118) with
the resolution of 2048 counts per revolution, which
transforms to 0.176 degree of accuracy. The sampling
rate of the angle measurements is 0.001 second. Rotary
pendulum attached to Quanser QUBE-Servo 2 is
depicted in Fig. 1. A more detailed description of
the specifications of the unit can be found from the
datasheet of the manufacturer.

Fig. 1. Quanser QUBE-Servo 2 system with the rotary pendulum

The equations of motion (EOM) of the rotary
pendulum system is obtained using Euler-Lagrange
method and defined by two non-linear differential
equations:

(mpL
2
r +

1
4
mpL

2
p −

1
4
mpL

2
pcos(α)2 + Jr)θ̈

− (1
2
mpLpLrcos(α))α̈ + (1

2
mpL

2
psin(α)cos(α))θ̇α̇

+ (1
2
mpLpLrsin(α))α2 = τ −Dr θ̇ (19)

1
2
mpLpLrcos(α)θ̈ + (Jp +

1
4
mpL

2
p)α̈

− 1
4
mpL

2
pcos(α)sin(α)θ̇2

+ 1
2
mpLpgsin(α) = −Dpα̇, (20)

and

τ = km(Vm − kmθ̇)
Rm

, (21)

where θ is a rotary arm angle, θ̇ is the angular speed
of the rotary arm angle, θ̈ is the angular acceleration
of the rotary arm, α is the inverted pendulum angle, α̇
is the angular velocity of the inverted pendulum angle
and α̈ is angular acceleration. The input voltage to the
system is Vm. The remaining constants are the arms
mass (mr, mp), the arms length (Lr, Lp), the equivalent
viscous damping coefficients (Dr,Dp), the moments of
inertia about pivot (Jr, Jp), the terminal resistance of
the DC motor Rm, torque constant kt and back-emf
constant km. The subscripts ’r ’ and ’p’ refer to the
rotary arm and the inverted pendulum, respectively.
The value of the inverted pendulum angle is zero when
the pendulum is in the downward position. Numerical
values of the parameters are listed in Table 1.

Table 1. Quanser QUBE-Servo 2 parameters

Symbol Description Value
Rotary arm

mr Rotary arm mass 0.095 kg
Lr Rotary arm length 0.085 m

Dr
Equivalent Viscous Damping
Coefficient

0.0015 Nms
rad

Jr
Moment of inertia about the
center of mass 5.7 ×10−5 kgm2

Pendulum link
mp Pendulum link mass 0.024 kg
Lp Pendulum link lenght 0.13 m

Dp
Equivalent Viscous Damping
Coefficient

0.0005 Nms
rad

Jp
Moment of inertia about the
center of mass 3.4 ×10−5kgm2

DC Motor
Rm Terminal resistance 8.4 Ω
kt Torque constant 0.042 Nm

A
km Back-emf constant 0.042 Vs

rad

The moments of inertia Jp and Jr in Table 1 are
calculated by

Jp =
1
12
mpL

2
p and Jr =

1
12
mrL

2
r. (22)

The kinematics of the inverted pendulum system is
sketched in Fig. 2. In Fig. 2, Cartesian axes are labeled
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as x0, y0 and z0, θ is the rotary arm angle, α is the
pendulum link angle, Lr is the rotary arm length and
Lp is the pendulum link length.

Fig. 2. Kinematics of the inverted pendulum

Equations (19) and (20) must be linearized for
LTI-control algorithms introduced previously in this
paper. Linearization is performed at the point where the
pendulum link angle α = 180○ = π rad, and the rotary
arm angle θ = 0○. The linearized EOM are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(mpL
2
r + Jr)θ̈ + (1

2mpLpLr)α̈ = τ −Dr θ̇
(−1

2mpLpLr)θ̈ + (Jp + 1
4mpL

2
p)α̈

+(−1
2mpLpg)α = −Dpα̇.

(23)

Using the values from Table 1 and substituting equation
(21) to equation (23), the state-space model of the
QUBE-Servo 2 system can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇

α̇

θ̇

α̈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1
0 −41.6 −4.16 1.37
0 72.4 −4.11 −2.40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

α

θ̇

α̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

13.9
13.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Vm

[θ
α
] = [1 0 0 0

0 1 0 0
]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

α

θ̇

α̇.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

and x0 = [0 0 0 0]ᵀ. The controllability and
observability matrices are both full rank, and hence, the
state-space model (24) is the minimal realization of the
inverted pendulum system. Thus, the invariant zeros

are equivalent to the transmission zeros. The transfer
function matrix of the QUBE-Servo 2 system from the
state-space model (24) is represented as

G(s) =
⎡⎢⎢⎢⎢⎣

13.9s2+52.1s−1582
s4+7.14s3−55.1s2−541s

13.7s−1.79×10−6

s3+7.14s2−55.1s−541

⎤⎥⎥⎥⎥⎦
. (25)

Using the algorithm in [12], the Smith-McMillan form
of the system is:

M(s) = [
1

s4+7.14s3−55.13s3−541s
0

] , (26)

in which the zero polynomial z(s) = 1 and the pole
polynomial p(s) = s4 + 7.14s3 − 55.1s2 − 541s. The
above indicates that the rotary pendulum does not have
any transmission zeros and the pole locations on the
complex plain are s = 0, s = 8.05 and s = −7.60±3.08i, so
the pendulum must be stabilized using feedback control.

5 Feedback controllers
In this paper, the designed controllers must satisfy three
requirements:
– The control input Vm has to be between ±15V .
– The deviation of the pendulum link angle α must be

kept with ± 20 degrees from the upright position.
– The rotary arm and pendulum should be moved

from the given initial position to final position
swiftly without causing overshoot or oscillation.

The first restriction is due to limited performance of the
DC motor. The second is involved because of so-called
swing-up control that Quanser has implemented for
raising the pendulum link to the upright position.

As mentioned in Section 1, the performances of the
closed-loop systems are evaluated using rise time (tr),
settling time (ts) and maximum overshoot (Mp) of the
response of the rotary arm. The rise time is defined to
be the time in which the response rises from 10% to
90% of its final value. The settling time is the time
which the system’s response takes to settle 2% from
its steady-state value, and the maximum overshoot is
the percentage of the maximum value of the response
compared to its final value.

Measurements from both angles θ and α are directly
provided by QUBE-Servo 2 hardware, whereas the rate
of changes of the θ and α are provided by the following
high-pass filters

50s
s + 50

. (27)
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The filters transfer function (27) is provided by Quanser.
First, pole-placement method is used to compose

the full-state gain matrix K. The locations of selected
poles are

s = −5, s = −8.8 ± 5i and s = −10. (28)

The characteristic polynomial (9) constituted from
poles (28) is

s4 + 32.6s3 + 416.4s2 + 2416.6s + 5122. (29)

Using the system’s controllability matrix and the
coefficients of the characteristic polynomial (29),
Ackermann’s formula (7) yields

K = [−3.2488 45.2021 −1.9767 3.8578] . (30)

Competing LQR-design is achieved by selecting
the weighting matrices for the cost function (10), and
minimizing it by solving the algebraic Ricatti equation
(12). After comparing the formed possible gain matrices,
the one designed with LQR method performed in the
best way i.e. the response yielded the smallest numbers
for the chosen performance indicators. The chosen
weights were

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 0 0 0
0 4 0 0
0 0 0.5 0
0 0 0 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and R = 1. (31)

The weights in (31) results in the state feedback gain
given by

K = [−3.8730 51.2299 −2.2650 4.3458] . (32)

The optimal state gain matrix (32) assigns the system’s
poles to the locations s = −5.10, s = −9.88 ± 4.19i and −
10.4.

5.1 Simulation results

The simulation model is constructed using the linearized
state-space representation (24). Connecting the state
gain matrix (32) with the filters (27) to control the
inverted pendulum yields the step responses of the
pendulum link angle α and the rotary arm angle θ,
which are represented in Fig. 3. Corresponding values of
the input voltage Vm is in Fig. 4. The size of the step of
the rotary arm angle in reference state xr is π

2 rad (90
degrees). There are also Gaussian measurement noise
included with mean = 0, variance = 1, sample time =
0.01, and which is multiplied by 0.001.

Fig. 3. Reference tracking of the simulated closed-loop system

Fig. 4. Control voltage of the simulated LQR controller

According to Fig. 3 and Fig. 4, the control
requirements are satisfied. The step response of the
rotary arm angle has no overshoot and the settling
time is 1.37 seconds. The input voltage (±6.5 V) is well
below the given limits, and the maximum deviation of
the pendulum angle is approximately 8 degree from the
upright position. Therefore, it is possible to use even
larger step change of the reference state. As expected
from (6), the state error is driven to zero, because
Axr = 0.

The influence of the zeros of the inverted pendulum
can be seen from the angle responses. To analyze
the effect of zeros, we look back at the system (25).
Both transfer function elements in the matrix have
nonminimal zero(s), which causes the inverted behavior
at the beginning of the step responses. When the DC
motor starts turning, the upright positioned pendulum
link deviates to the wrong direction due to the moving
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rotary arm and the gravitation. To be able to track the
given reference state, without tipping over the link, DC
motor has to perform the corrective move to be able to
maintain its balancing property.

5.2 Implementation results

The Simulink model of the physical QUBE-Servo 2 unit
differs from that of the one used in Section 5.1 and is
found from the documentation of the pendulum link
system by Quanser. Difference between the model used
in this paper and the one by Quanser is caused by
compensation term due to relative measurement of the
angles. In practice, the compensation term causes the
activation of the step signal to take place at the same
moment as the reference state changes. That produces
an offset to the response of the rotary arm angle before
the step change. With the compensation term, responses
of the angles θ and α are in Fig. 5 and values of the input
voltage in Fig. 6. The step change of the reference state
of the rotary arm angle is the same magnitude (π2 ) as
in the simulations. The zero value of the pendulum link
angle is defined to be in the lower position, so values
of the y-axis in Fig. 5 are +180 degrees compared to
simulation results.

Fig. 5. Experimental result of the angular position of closed-loop
system

The performance of the system is similar compared
to simulation results in Section 5.1. Both of the
given restriction is met with secure margins, and
there is practically no steady-state error as discussed
in Subsection 2.2. The model of the system does
not describe the pendulum system accurately, so the

Fig. 6. Experimental result of the control voltage of chosen LQR
controller

experimental response of the rotary arm poses a
slight overshoot. The resolution of the pendulum link
measurement is seen from the constant vibration of the
pendulum link position. The vibration is also due to
balancing movements of the DC motor, which stabilize
the pendulum link to the upright position. The transient
response characteristics of the system are

Mp = 2.48 ts = 3.90 and tr = 0.966. (33)

The performance could slightly be improved with
a parallel-connected integrating controller. The
disadvantage of that approach is the selection of the
integration gain which could lead, in the worst scenario,
to more oscillating responses and even instability of the
system. The effect of the minimal-zeros of the system
is in line with the simulation result. As mentioned in
Section 5, the stability of the system is sensitive to
small changes in the values in state gain matrix.

6 Conclusion
In this paper, we have designed an LQR state
feedback controller for Quanser QUBE-Servo 2 inverted
pendulum system. The LQR controller was not only able
to stabilize the system, but it also satisfied all control
requirements and design constraints. The closed-loop
system yielded fast and accurate set-point tracking of
the rotary arm angle despite of nonminimum phase
system characteristics. The controllers presented in
this paper could also be potentially used in other
applications e.g., in Segway kind of conveyors.

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

58

Automaatiopävät23 2019



References
[1] Burl J. B., Linear Optimal Control, H2 and Hinf Methods,

Addison Wesley Longman Inc., Menlo Park, Calif., 1999
[2] Belanger P. R., Control Engineering: A Modern Approach,

Saunders College Publ., Fort Worth : New York (NY), 1995
[3] Muskinja N., Tovornik B. A., Swinging up and stabilization

of a real inverted pendulum, IEEE Transactions
on Industrial Electronics, 2006, 53, 631-639, DOI:
10.1109/TIE.2006.870667

[4] Pathak K., Franch K., Agrawal S. K., Velocity and position
control of a wheeled inverted pendulum by partial feedback
linearization, IEEE Transactions on Robotics, 2005, 21,
505-513, DOI: 10.1109/TRO.2004.840905

[5] Hehn M., D’Andrea R., A flying inverted pendulum, 2011
IEEE International Conference on Robotics and Automation
(9 May - 13 May 2011, Shanghai, China), IEEE, Shanghai,
2011, 763-770

[6] Matsuoka K., Williams V., Learning to balance the inverted
pendulum using neural networks, Proceedings of the 1991
IEEE International Joint Conference on Neural Networks
(18 November - 21 November 1991, Singapore, Singapore),
IEEE, Singapore, 1991, 214-219

[7] Takei T., Imamura R., Yuta S., Baggage Transportation
and Navigation by a Wheeled Inverted Pendulum Mobile
Robot, IEEE Transactions on Industrial Electronics, 2009,
56, 3985-3994, DOI: 10.1109/TIE.2009.2027252

[8] Tang Z., Joo Er M., Humanoid 3D Gait Generation Based
on Inverted Pendulum Model, 2007 IEEE 22nd International
Symposium on Intelligent Control (1 October - 3 October
2007, Singapore, Singapore), IEEE, Singapore, 2007,
339–344

[9] Williams II R. L., Lawrence D. A., Linear State-Space
Control Systems, John Wiley & Sons, Inc., Hoboken, New
Jersey, 2007

[10] Ogata K., Modern Control Engineering, 5th ed., Pearson
Education Inc., Prentice Hall, 2010

[11] Glyn J., Advanced Modern Engineering Mathematics, 3rd
ed., Pearson Education Limited, Harlow, 2011

[12] Maciejowski J.M., Multivariable feedback design,
Addison-Wesley Publishers Ltd., Wokingham, 1989

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

59

Automaatiopävät23 2019
Proceedings
ISBN 978–952-5183-54-2


	Mean Value Modeling of Maritime Diesel Engines
	1 Introduction
	2 Modelling
	2.1 Airpath model
	2.2 Fuel-path model
	2.3 Linearization and analysis

	3 Control design
	4 Simulation results
	4.1 Nonlinear and linear open-looped system
	4.2 Nonlinear controlled system
	4.3 Linear controlled system

	5 Conclusions
	6 Acknowledgement

	State feedback control of a rotary inverted pendulum
	1 Introduction
	2 State feedback
	2.1 State-space representation
	2.2 State feedback law
	2.3 Pole-placement method
	2.4 Linear Quadratic Regulator

	3 Transfer function matrix and Smith-McMillan form
	3.1 System's poles and zeros from the Smith-McMillan form

	4 Quanser QUBE-Servo 2 system
	5 Feedback controllers
	5.1 Simulation results
	5.2 Implementation results

	6 Conclusion

	Optimal control maps for fuel efficiency and emissions reduction in maritime diesel engines
	1 Introduction
	2 Research objectives
	2.1 Key parameters of the engine
	2.2 Emission reduction targets

	3 Modelling by the design of experiments
	4 Optimisation by including weights and the cruise profile
	5 Conclusion

	INTRODUCTION
	METHOD
	Linear Motion with Compliance
	Learning the LMC primitive
	Learning search motions
	Learning Sequence of Motions

	EXPERIMENTS AND RESULTS
	Conclusions
	References

