
 Automaatiopäivät23 2019

Mingzhang Wu, Janne Koljonen and Timo Mantere*

Addressing Resource Allocation Issues in Cloud
Computing Environment with Ant Colony
Optimization
Abstract: Cloud computing is a fast growing and
attractive paradigm in information technology, since it
allows using resources on-demand wherever and
whenever needed. The use of dynamic cloud resource
allocation allows immediate accommodation to
unpredictable demands and improvement in the return
on investment as for the computing infrastructure. The
cloud resources allocation optimization model is one of
the core parts in cloud computing. However, despite
the recent growth of the research in the cloud
computing area, several problems with the process of
resource allocation remain unaddressed. Cost and
performance are two important but contradictive
objectives in the cloud resources allocation process.
Cost-performance trade-off constitutes a challenging
multi-objective optimization problem in cloud
resources allocation. In this paper, a new optimization
model is proposed to solve this multi-objective
optimization problem effectively. An ant colony
optimization algorithm that optimizes the Quality of
Service (QoS) and the response time in a simulated
CloudSim environment that models five servers of
varying characteristics. Experimental results
demonstrate the effectiveness of the designed
algorithms. Ant colony algorithm shows mostly higher
performance than the round robin and greedy
assignment algorithms that were used as benchmarks.

Keywords: ant colony optimization, cloud computing,
CloudSim, cost-performance, resource allocation,
trade-off problem

*Corresponding Author: Timo Mantere: University of
Vaasa, School of Technology and Innovations, E-mail:
timo.mantere@uva.fi

Mingzhang Wu: E-mail: mingzhang.wu@gmail.com

Janne Koljonen: University of Vaasa, School of
Technology and Innovations, E-mail:
janne.koljonen@uva.fi

1 Introduction

1.1 Cloud computing

In the recent years, information technology (IT) has
been integrated into our daily life more and more. The
major applications are build up based on network and
internet technologies. We are now in an era of “big
data” with rapid growth on the number of transactions,
information, and data. However, low cost, fast speed,
and efficient computing are desired. The traditional
network and local computation capacity are unable to
meet these needs. Instead, distributed network
technologies are developed to enable the utilization of
distributed computing resources from the internet.
How to integrate and distribute the resources, such as
servers, over the internet give new research topics to
be considered.

Cloud computing, as a new emerging information
and communication technology concept, has been an
interesting topic recently. There are many definitions of
cloud computing. Cloud computing is a result of the
convergence of several technologies, such as, (1)
hardware, (2) internet technologies, (3) distributed
computing, and (4) systems management. The main
advantage of cloud computing is providing computing
resources based on the public utility model (compare
to water, electricity, gas, and telephony) to enhance
reliability, scalability, and performance [1].

Fig. 1. A holistic view of cloud computing [2]

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

7

 Automaatiopäivät23 2019

Fig. 2. Network topology of virtual resources in cloud
computing

From the technical perspective, cloud computing is the
integration of many aspects of technologies, such as (1)
virtualization, (2) utility computing, and (3) distributed
computing, among others.

From the business perspective, cloud computing is a
new business model. It enables (1) sharing information
among users, (2) buying resources on-demand without
large investments, (3) selling capacity to many users,
and subsequently (4) improving the return on
investments due to better rates of capacity use.
Furthermore, (5) investing on the latest, high-
performance infrastructure should give a business
advantage to the service provider.

Cloud computing model has changed and will affect
many companies’ business model and operational
status, not only for the IT industry. Cloud computing
can provide three types of services: Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). A summary of cloud
computing properties are given in Figs. 1 and 2.

The National Institute of Standards (NIST) has
emphasized the elasticity feature of computing
resources in their definition of cloud computing [3],
which is largely accepted and frequently cited. It
defines cloud as follows: “Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction.” The
terminology used in this study is clarified in Table 1.

This article is based in major parts on the first author’s
master’s thesis [4].

1.2 Ant colony optimization

Ant Colony Optimization (ACO) is a heuristics proposed
by Marco Dorigo [5] in the early 1990s. It was inspired
by the observation of the collaboration activities of ants

searching for food. Ants can gradually find out the
shortest path between a food source and the nest of
the colony. ACO is suitable for many optimization
problems that can be modeled as a graph, including
resource assignment. However, in its original form, ACO
modifies the edges of a graph, not the nodes as will be
done in this paper.

Table 1. Terminologies used in this research

The weakness of many optimization methods is their
inability to handle more than one objective. In addition,
these methods often employ local and greedy (e.g., hill-
climbing) approaches, which are prone to find only a
local optimum [6]. Instead, ACO is considered as a part
of the family of evolutionary algorithms that use
multiple parallel trials and stochastic search to improve
the probability to find the global optimum. How ACO is
implemented in this study, is reported in Section 3.

ACO has previously been applied successfully to a
number of benchmark combinatorial optimization
problems (see Section 2 for more details). In this study,
it is proposed how to use ACO to solve the multi-
objective model for Cost-Performance trade-off
problem (CPTOP). The concept of ACO-based multi-
objective CPTOP model is designed and tested using
CloudSim, which is an extendable discrete-event
simulation toolkit that enables modeling and
simulation of cloud computing environments and the
application-provisioning environment.

2 Related work

Resource allocation for clouds has been studied with a
very wide scope in the literature. The problem of
determining an optimal allocation of the requests to a
pool of resources is NP-hard (non-deterministic
polynomial-time hard) problem. Nevertheless, many
optimization strategies may be used to solve it
efficiently. In particular, several heuristic algorithms
have been proposed by researchers for optimal
allocation of cloud resources [7].

Fidanova [8] proposed an adaptive resource
allocation algorithm in cloud computing environment.

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

8

 Automaatiopäivät23 2019

That paper used adaptive min-min scheduling and list
scheduling, but it was used in a static manner [9].

In Foster et al. [10], the authors proposed an optimal
virtual machine placement algorithm for minimizing the
cost that cloud customer have to pay to the cloud
service provider, when they need virtual machine from
cloud computing environment access as a part of the
cloud service. In Chaisiri et al. [11], the authors
described the multi-objective mechanism for
scheduling applications that take various cost
constraints and the availability of resources into
account.

In Frincu and Craciun [12], the focus is more on the
resource allocation strategy in selecting the cloud
provider, but the approach is static as for selecting the
data center from the distributed environment where
the global data center is available, with taking care of
timing parameter as in [9]. Chimakurthi [7] propose an
energy-efficient mechanism to minimize the number of
servers to be used for hosting the services and
allocating the cloud resources to the applications.

The paper by Hua et al. [13] propose an ant colony
optimization algorithm for resource allocation, in which
all the characteristics in cloud are considered. It has
been compared with a genetic algorithm and a
simulated annealing algorithm, proving that it is
suitable for computing resource search allocation in
cloud computing environment.

Omara et al. [14] propose an optimization solution
to the allocation of shared resources to minimize the
estimated cost and enhance virtual machine
configuration. Banerjee et al. [15] propose optimization
method by using modified Ant Colony Framework to
optimize the scheduling throughput to the service for
all the diversified requests using different resource
allocators available. Wei et al. [16] suggest a deadline
and budget constraint cost-time optimization algorithm
for scheduling dependent subtasks by using game
theory.

In [17], the cost-performance tradeoff in cloud IaaS
was addressed, where the problem has been
formulated as a multi-objective optimization. The
proposed model was built based on a fine-grained
charging model and a normalized performance model.
The implementation using genetic algorithms and the
experimental results proved the effectiveness of the
proposed model.

3 Experimental setup

As mentioned earlier, the optimal cloud resource
allocation problem will be studied. Resource allocation
in a cloud is understood here as the allocation of virtual
machines (VM) to physical resources. The cloud
network is clearly dynamic, so rather than allocating
according to the physical resources of a node, it should

be done with respect to the instantaneously available
free resources of a node. The result of the optimization
is an assignment of VM-node pairs [18] and the related
performance metrics.

3.1 ACO-based Multi-objective CPTOP Model

The master-slave architecture is a mature architecture
with a single master server or job tracker and several
slave servers, which has been widely used in cloud
computing like in Google’s MapReduce and Hadoop.
Fig. 3 shows a typical scenario of the network topology
of virtual resources in cloud computing, which is based
on the master-slave architecture.

Fig. 3. Cloud computing resource architecture

In the master-slave architecture, a request is first
submitted to a master node in the cloud platform by
the user. Then the request is divided into several
executable tasks in the master node and the generated
tasks are distributed to different slave nodes.

After receiving the assigned sub tasks, the slave
nodes will find appropriate resources. The tasks are
executed in the slave nodes separately with the
guidance of the master node, and the results are
returned to the master node. The results include
information about processing abilities, characteristics
(number of CPU cores, amount of main memory, etc.),
and cost.

Finally, the distributed results are combined
together in the master node and sent to the requesting
user. Furthermore, the master node is responsible for
monitoring the all the steps and re-executing the failed
tasks.

In this paper, the role of ACO is simulate several
generations of artificial ants that search for the optimal
solution. Every ant of a generation builds a solution
step-by-step going through several probabilistic
decisions. In general, ants that find a good solution
mark their paths through the decision space by putting
some amounts of pheromone on the edges of the path.

The pheromone attracts the ants of the next
generations, and the result is that they search the
solution space near the previous good solutions. In
addition to the pheromone values, the ants are usually
guided by some problem-specific heuristic for

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

9

 Automaatiopäivät23 2019

evaluating the trial solutions.

Fig. 4. Flowchart of Ant Colony Optimization

In order to apply ACO to tackle Cost-Performance
trade-off problem (CPTOP), the problem should be
transformed into a Travel Salesman Problem (TSP) in
Fig. 4. Moreover, the separate objectives of cost and
performance should be integrated into a single
objective function.

An analysis of a cloud computing platform reveals
several characteristics that are in common with the
standard ACO: slave nodes being analogous to food
locations, master nodes to nests, and resource
allocation to foraging activity. For each of the slave
nodes, ACO needs to calculate the free cloud resources.
If the available resource exceeds the user’s
requirements for accomplishing the sub tasks, then this
slave node should be allocated to the respective sub
task. If the remaining resource is insufficient for the
minimal requirement of the user, another appropriate
slave node is searched for.

When the slave node sends back the results, the
pheromone values are updated and saved. The master
node will send new guidance according to the returned
information to other slave nodes. This method can
optimize the final results. The search for suitable slave
node activity is conducted in a certain range to
decrease the cost and increase the performance.

3.2 CloudSim

CloudSim provides many ways for managing and

utilizing the resources, such as virtual machine (VMs),
datacenter, and so on. It supports the research and
development of cloud computing in testing the
performance of a newly developed application service
in a controlled and easy to set-up environment.
CloudSim offers: (1) support to modeling and
simulation of a large cloud computing infrastructure,
(2) a self-contained support data center, service agent,
scheduling and allocation strategy platform.

The framework and architecture of CloudSim consist
of four main layers:
– SimJava layer supports several core functionalities

required for simulation, such as queuing and
processing of events, creation of system
components (services, host, data center, broker,
VMs), and management of the simulation clock.

– GridSim layer includes libraries that support high-
level software components for modeling multiple
grid infrastructures, including networks and
associated traffic profiles, and fundamental grid
components.

– CloudSim layer provides support for modeling and
simulation of virtualized cloud-based data center
environments including dedicated management
interfaces for VMs, memory, storage, and
bandwidth.

– CloudSim stack is the top layer, and it includes the
user code that defines basic entities for hosts
(number of machines, their specification, and so on),
applications (number of tasks and their
requirements), VMs, number of users and their
application types, and broker scheduling policies.

3.3 Optimization

An important step in defining an algorithm for the
resource allocation problem is defining the objective of
the optimization. The objectives for the customers and
the cloud service providers are different. In a simplified
view, the objective of the customer is to maximize the
performance of resources with a fixed cost. For the
cloud service provider, the total amount of resources is
fixed, and the objective is to add as many customer
requests to the cloud as possible.

The more detailed rationale is as follows:
– As for the customers: When customers send

requests to the cloud services provider for execution
of their tasks, they seek to reduce their costs by
transferring their operation to the cloud
environment. Then the best offer is selected and the
corresponding resources will be allocated to run the
task. Moreover, they want to receive as good service
as possible (within the limits of the cost). From the
customers’ perspective, they are selfish, because the
customers are not concerned about the other
customers in cloud.

– As for the cloud services providers: They want to

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

10

 Automaatiopäivät23 2019

increase the profits obtained from the limited
resources through the increase of income from
hosting more users while minimizing the cost
(investments) by optimal assignment of customers’
requests to the resources.

Cost and performance are two competing objectives in
cloud resources allocation. It is a NP-hard and multi-
objective optimization problem without a unique
solution. The number of possible solutions grows
exponentially with respect to the number of resources
and customers.

The optimization goal is to find, in some respect, the
best trade-off between cost and performance. There
are two challenges:
– A multi-optimal approach seems infeasible due to

the hardness of the problem. Solutions optimal with
respect to different criteria will tend to be vastly
different, and there is no way to find a trade-off by
interpolation due to the discrete nature of the
resource assignment.

– It is difficult to define performance and quality from
a system perspective. In the dynamic resource
allocation, requests are assigned one by one, and
simple heuristics would give no guarantee of fairness
in performance. In this paper, the minimum level of
performance is therefore determined by the Service
Level Agreement (SLA) of each request.

In the ACO, the movements of the ants are controlled
by probabilities that are products of two parts. The first
is an assignment probability that is proportional to the
attractiveness of a match from the customer point of
view (called visibility in [5]). The second is a memory of
the best past assignments represented by the fictitious
pheromone trail. As long as the SLA of a request can be
fulfilled the attractiveness is non-zero, otherwise it is
zero.

The probability of transition to another (including
current) node is evaluated only for feasible
assignments:

(1)

where the pheromone ij(t) and the attractiveness ij(t)
dependent on time t. The pheromone density changes
in each cycle, while the attractiveness in every move
within a cycle.

Cost can be defined in terms of idle capacity, that is,
unoccupied capacity that cannot be assigned to
another VM due to limitations in some other resource
type. The cost will depend on the applications, or, in
other words, the distribution of demands of arriving
requests.

The cost for a cloud service providers can be
expressed in the degree of infrastructure utilization or,
equivalently, return on investments. The service
providers wish to allocate jobs to resources in a best-fit
manner, so that an allocated customer occupies no
more than the necessary minimum.

The greedy principle from the cloud provider’s
perspective is that the more VMs can be allocated, the
higher the utilization and the return on investment is.
As a metric for system efficiency, the energy of the
relative free resources is used. The optimization then
follows the principle of minimum energy. The system
energy is defined as:

(2)

where Ci is the capacity of the server i and rij is the VM
capacity requirement of VM j on node i. The total
energy sums over the squared free resources of all
servers.

It is important to performance features into account
while allocating resources, since it allows providing the
customers high Quality of Service (QoS), with the best
response time as an example, and to meet the Service
Level Agreement (SLA) established. Indeed, it is not
easy to handle efficiently resource allocation processes
in Cloud, since the applications deployed in Cloud obey
non-uniform usage patterns, and the cloud allocation
architecture needs to provide different scenarios of
resource allocation to satisfy the demands and provide
quality [19].

Now the actual algorithm is an adaptation of the
ACO algorithm for solving the Traveling Salesman
Problem (TSP), described in [5]. The assignment
problem is modeled as a complete graph on the set of
n nodes.

Initially, the ants are distributed between the nodes
in a round-robin fashion. They could also originate from
a source node (a nest), but this is not necessary, as the
algorithm only performs a single iteration in each cycle.
The ants could also be distributed randomly, which
would affect the order of assignments. In the example
below, however, this has no or little effect.

The ants move according to a matrix of transition
probabilities, where self-loops are allowed, so that an
ant may request its job to be assigned to the node it
originally occupies. As opposed to the TSP, where the
attractiveness is fixed, the system state changes with
assignment of a new job (the property of the ant, or
customer). Therefore, after each move, the transition
probabilities change and must be recalculated. The
attractiveness of a server to a given customer
decreases when resources are assigned to another
customer. As a measure of attractiveness, the (scaled)
available CPU processing power of the server is used.

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

11

 Automaatiopäivät23 2019

Next, the system cost is calculated according to (2).
This energy could be a composite measure that
includes other resources, such as RAM as suggested in
[1]. However, now the energy is based only on the CPU
processing power.

The deposited amount of pheromone, ∆ on each
edge is now dependent on the system cost, rather than
the trail of a single ant as in the TSP. This quantity is
given by:

(3)

where Q is a scaling constant and ck the cost in cycle
k ∈ {1, 2, ..., N}. Since ck can be zero, a maximum limit
on ∆ is set to one. This limit is rather arbitrary, and it
is an additional system parameter that affects the
convergence properties of the algorithm.

The cost is used to update matrix P, first by
multiplying all previous pheromone levels pij by the
evaporation constant (1 − ρ), and then by adding ∆
onto edges describing the assignments used in the
iteration.

The minimum cost and the corresponding
assignment obtained so far is recorded after each cycle.
Matrix A and the vectors of the free node resources and
assignments are restored to their initial values,
corresponding to not yet assigned jobs. Table 2
summarizes the ACO algorithm.

Table 2. Resource allocation algorithm

4 Experiments

To test the algorithm, the small cluster setup described
in [18] was used. The simplicity of this scenario with five
servers having different characteristics and a single
type of virtual machine (VM) makes the manual
comparison with other assignment schemes

straightforward. The algorithm as such should be easily
extended to larger and more general cases.

To compare the algorithm with other assignment
schemes, the results with the round-robin and a
customer greedy heuristic schemes were both tested.
In the CloudSim experiments, the goal was to keep
things as simple as possible apart from the hosts and
VMs. Only one user, one datacenter and one broker
were created and initiated. The VMs represent the ants,
and the cloudlets jobs assigned to the VMs.

The three assignment strategies (round-robin,
greedy, and ACO) were implemented in CloudSim using
Java. The round-robin assignment was implemented on
the basis of a project in Github [20]. The number of
cloudlets was set to 10 as the code in [20] also used.

The number of ants (VMs) is set equal to the number
of nodes. The properties of the host servers in the
cluster are listed in Table 3, and of the virtual machines
in Table 4.

Table 3. Host servers specification: MIPS and RAM
capacities

Table 4. Virtual machine specification: requirements on
MIPS and RAM

Tables 5, 6, and 7 show the results of the three
algorithms. The reported metric for each of the hosts is
the percentage of free capacity, calculated as:

1 −
occupied capacity

total host capacity
. (4)

Two versions of the metrics are calculated: taking and
not taking into account the number CloudSim
Processing Elements (PEs), i.e., cores.

The cost as defined in Equation (2), that is, the sum
of the squared entries. The round-robin and the greedy
algorithms are deterministic, whereas the ACO
algorithm is stochastic. ACO may therefore give a
different result at each run, and not even a reasonable
convergence is guaranteed. This depends on the
random number generator.

In the round-robin scheme, the VMs are simply
distributed one at each node, and the relative free
capacity is shown in Table 5. The cost is 1.3725 and
taking the number of processors into account, the

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

12

 Automaatiopäivät23 2019

energy is 2.2025.
Since the round-robin assignment scheme is

deterministic and not an optimization method, it is
likely to perform poorly when there are VMs with
different requirements. In this example, however, the
round-robin assignment is good, under the energy
metric.

Table 5. Efficiency of round-robin assignment

The greedy assignment method lets each customer
choose server according to the largest amount of
available processing capacity. These results are shown
in Table 6. The cost (energy) in this case is 3.65. The
same value is achieved when taking the number of
processors into account, since there are zero VMs in all
multi-core hosts (Host IDs 1, 2, and 4, compare to Table
3). The greedy scheme is essentially what would be
expected from a single iteration of the algorithm.

Table 6. Efficiency of greedy assignment

The ACO algorithm applied to the same problem gave
the assignments shown in Table 7. It can be seen that
the lower capacity nodes (1, 2, and 4; see Table 3 for
the Host specifications) are assigned VMs, but not node
3. The minimum energy obtained is 1.32. After reaching
the minimum energy, the algorithm was run for up to
N = 10,000 without showing any further improvement.
Taking the number of processors into account, the
energy is 2.15 for this policy.

Table 7. Efficiency of ACO assignment

The parameter values used are α = 0.5, β = 0.5, ρ = 0.1
and 0 = 0.1. The cut-off limit for the inverse of the cost
was set (rather arbitrarily) to 1. Elaborating on the
system parameters would probably influence the
convergence of the algorithm significantly, but it has
not been studied in detail here.

The convergence performance (Fig. 5.) shows one
run trace of the algorithm. This case shows an initial
guess that already better than the cost of the greedy
assignment (compare to Table 6). After that ACO finds
a local minimum in two more iterations. The figure
shows a case of an optimization with a particular (lucky
guess) seed, which converged very fast. Normally, such
an optimization would show a jagged curve stretching
much longer on the x-axis. The figure is intended to
show the actual ideal convergence rather than the
convergence performance in general.

Fig. 5. Ideal convergence of ACO

Fig. 6. shows the energy for each of the three
assignment strategies for an increasing number of
standard size VMs as defined in Table 4. The ACO
algorithm described in this study (green line) has lower
energy than the other two, although the round-robin
strategy (blue line) is close to optimal. The greedy
algorithm is evidently the worst of these three with
practically any number of VMs.

Fig. 6. Comparison of the efficiency of the algorithms:
round-robin (blue), greedy (red), and ACO (green).

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

13

 Automaatiopäivät23 2019

5 Conclusions

Cloud computing enables a more efficient way to use
utility computing resources and services. Users can
access the computing resources with virtualized
technologies and pay only for the resource accessed
while getting the level of quality of service (QoS)
wanted. In this paper, a modified ant colony
optimization algorithm for cost and performance trade-
off optimization problem is developed to encourage
the formation of solutions to achieve the cost
minimization.

An optimal assignment was found by minimizing a
combined energy function that measures cloud
provider’s costs. However, the test setup was relatively
limited and simplified, due that a full-scale simulation
of cloud computing services are complicated. The
benefit for the cloud provider is to maximize the
possibility to add further VMs to the existing cloud
infrastructure without performance degradation or
delays.

Three assignment policies were simulated and
tested in CloudSim: round-robin, a customer greedy
heuristic, and an optimized allocation implemented as
an Ant Colony Optimization algorithm. When
comparing the three assignment policies, the round-
robin can be said to be both simple and efficient. The
greedy assignment, where a customer can choose to
allocate a VM to the host with the freest capacity was
rather expensive. However, in this implementation,
each processor had the same MIPS, so the results might
be different in an environment with more versatile set
of resources available.

Finally, the way that ACO uses resources differed
from the round robin method in this case only so that
one extra VM was assigned to host number 0, instead
of host number 3. Nevertheless, this little change
makes ACO to obtain the best energy function values.
However, in this simple setup the difference is only
slight. The further tests with varying numbers of VMs
validated the mutual order of the three algorithms;
ACO consistently outperforms the simple round-robin
method slightly, while the round-robin method
outperforms the simple greedy method significantly.

By using this dynamic optimization, the new request
will be given to some host, and in the same time, an
already assigned VM can in principle be re-assigned,
but this case has not been tested in this study. Instead,
to reach an optimal solution, the algorithm starts afresh
in each iteration. It converges after a (random) number
of iterations, and this converged result is then the
assignment policy.

These experiments have some limitations. Actually,
the implementation of ACO in CloudSim makes a
solution 'all at once', not just a list of nodes like in
CloudSim. Therefore, it is recommended to develop an

ACO variant that could find an optimal policy with a
more dynamic situation, where VMs are created and
terminated all the time.

References
[1] Asha N., Rao G. R., A Review on Various Resource

Allocation Strategies in Cloud Computing,
International Journal of Emerging Technology and
Advanced Engineering (IJETAE), 2013, 3(7).

[2] European Commission, The Future of Cloud
Computing – Opportunities for European Cloud
Beyond 2010, Public Report, European
Commission, 2010.

[3] Mell P., Grance T., The NIST definition of cloud
computing (version 15), 2009, retrieved from
https://www.nist.gov/sites/default/files/docume
nts/itl/cloud/cloud-def-v15.pdf.

[4] Wu M., Addressing Resources Allocation Issues in
Cloud Computing Environment, M.Sc. thesis,
University of Vaasa, Vaasa, Finland, 2016.

[5] Dorigo M., Maniezzo V., Colorni, A., Ant system:
optimization by a colony of cooperating agents,
IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 1996, 26(1), 29–
41.

[6] Afshar A., Kaveh A., Shoghli O. R., Multi-objective
optimization of time-cost-quality using multi-
colony ant algorithm, Asian Journal of Civil
Engineering (Building and Housing), 2007, 8(2),
113–124.

[7] Chimakurthi L., Power efficient resource allocation
for clouds using ant colony framework, 2011, arXiv
preprint arXiv:1102.2608.

[8] Fidanova S., ACO algorithm for MKP using various
heuristic information, In: Dimov I., Lirkov I.,
Margenov S., Zlatev Z. (eds.), Proceedings of the
International Conference on Numerical Methods
and Applications (20–24 August 2002, Borovets,
Bulgaria), Springer, Berlin Heidelberg, 2002, 438–
444.

[9] Parikh K., Hawanna N., Haleema P.K.,
Jayasubalakshm R., Virtual Machine Allocation
Policy in Cloud Computing Using CloudSim in Java,
IJGDC, 2015, 8(1), 145–158.

[10] Foster I., Kesselman, C. (Eds.), The Grid 2: Blueprint
for a new computing infrastructure, 2nd ed.,
Morgan Kaufmann, 2003.

[11] Chaisiri S., Lee B. S., Niyato, D., Optimal virtual
machine placement across multiple cloud
providers, In: Proceedings of the IEEE International
Conference on Services Computing (21–25
September 2009, Bangalore, India), IEEE Asia-
Pacific, 2009, 103–110).

[12] Frincu M. E., Craciun C., Multi-objective meta-
heuristics for scheduling applications with high
availability requirements and cost constraints in

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

14

 Automaatiopäivät23 2019

multi-cloud environments, In: The Proceedings of
4th IEEE/ACM International Conference on Utility
and Cloud Computing (5–7 December 2011,
Melbourne, Australia), IEEE, 2011 267–274.

[13] Hua X. Y., Zheng J., Hu W. X., Ant colony
optimization algorithm for computing resource
allocation based on cloud computing
environment, Journal of East China Normal
University (Natural Science), 2010, 1(1), 127–134.

[14] Omara F. A., Khattab S. M., Sahal R., Optimum
Resource Allocation of Database in Cloud
Computing. Egyptian Informatics Journal, 2014,
15(1), 1–12.

[15] Banerjee S., Mukherjee I., Mahanti P. K., Cloud
computing initiative using modified ant colony
framework, World academy of science,
engineering and technology, 2009, 56, 221–224.

[16] Wei G., Vasilakos A. V., Zheng Y., Xiong N., A game-
theoretic method of fair resource allocation for
cloud computing services, The journal of
supercomputing, 2010, 54(2), 252–269.

[17] Kong S., Li Y., Feng, L. (2012). Cost-performance
driven resource configuration for database
applications in IaaS cloud environments, In: Ivanov
I., van Sinderen M., Shishkov B. (eds.), Cloud
Computing and Services Science (18–21 April
2012, Porto, Portugal), Springer, New York, 2012,
111–129.

[18] Lee H. M., Jeong Y. S., Jang, H. J., Performance
analysis based resource allocation for green cloud
computing, The Journal of Supercomputing, 2014,
69(3), 1013–1026.

[19] Sagbo K. A. R., Houngue, P., Quality architecture
for resource allocation in cloud computing, In:
Service-Oriented and Cloud Computing, Springer,
Berlin Heidelberg, 2012, 154–168.

 [20] AnanthaRajuC, CloudSim Example with Round
Robin Data center broker & Round Robin Vm
Allocation Policy with Circular Hosts List, 2015,
retrieved from https://github.com/
AnanthaRajuC/CloudSim-Round-Robin.

Proceedings
ISBN 978–952-5183-54-2

Suomen Automaatioseura
Finnish Society of Automation

Automaatiopäivät23
Oulu 15.-16.5.2019

15

	Mean Value Modeling of Maritime Diesel Engines
	1 Introduction
	2 Modelling
	2.1 Airpath model
	2.2 Fuel-path model
	2.3 Linearization and analysis

	3 Control design
	4 Simulation results
	4.1 Nonlinear and linear open-looped system
	4.2 Nonlinear controlled system
	4.3 Linear controlled system

	5 Conclusions
	6 Acknowledgement

	State feedback control of a rotary inverted pendulum
	1 Introduction
	2 State feedback
	2.1 State-space representation
	2.2 State feedback law
	2.3 Pole-placement method
	2.4 Linear Quadratic Regulator

	3 Transfer function matrix and Smith-McMillan form
	3.1 System's poles and zeros from the Smith-McMillan form

	4 Quanser QUBE-Servo 2 system
	5 Feedback controllers
	5.1 Simulation results
	5.2 Implementation results

	6 Conclusion

	Optimal control maps for fuel efficiency and emissions reduction in maritime diesel engines
	1 Introduction
	2 Research objectives
	2.1 Key parameters of the engine
	2.2 Emission reduction targets

	3 Modelling by the design of experiments
	4 Optimisation by including weights and the cruise profile
	5 Conclusion

	INTRODUCTION
	METHOD
	Linear Motion with Compliance
	Learning the LMC primitive
	Learning search motions
	Learning Sequence of Motions

	EXPERIMENTS AND RESULTS
	Conclusions
	References

