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Forecasting and optimization of the heat demand at 
city level 

Abstract: Computational methods have been 
developed for the predictive optimization of the heat 
demand to increase energy efficiency in heating by 
taking into account the point of view of both the energy 
producers and consumers. Research methods included 
the modelling of the individual buildings indoor 
temperature and heat demand, which can then be 
expanded to a larger scale to optimize the heat demand 
at the city level. The developed models are accurate 
and easily adaptable enabling the city level predictive 
optimization of the heat demand. This makes it possible 
to better adapt to and prepare for future changes in the 
outdoor temperature while at the same time ensuring 
the normal living conditions and optimized energy 
efficiency, also enabling the demand side management 
in the heating network. However, the full realization of 
the concept requires proper real-time and two-way 
information flow through the whole energy chain. 
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1 Introduction 

Energy Efficiency Directive (EED) [1] sets binding 
measures for EU countries to improve energy efficiency 
by 20% at EU level by 2020. In 2016, an update to EED 
was proposed setting a new 30% energy efficiency 
target for 2030 [2]. At the same time, buildings 
represent 20–40% of the total energy consumption and 
half of this energy is used for heating, ventilation and 
air conditioning (HVAC) [3]. Furthermore, for 15 of the 
28 EU countries the annual heat demand in buildings is 
larger than electricity and cooling demands [4]. Also, 
fossil fuels are still used to produce most of the heat [5]. 
For the aforementioned reasons, the implementation 
of new energy efficiency measures for the heating and 
building sectors is of utmost importance. 

As the requirements for energy efficiency are 
becoming stricter, it is no longer sufficient to consider 
buildings as isolated elements in energy systems [6]. 
They have to be treated as active participants having 
storage capabilities and even their own energy 
production. Therefore, buildings have to be taken into 
consideration when developing new control and 
optimization schemes for district heating systems. A 
concept for optimizing the heat demand in district 
heating systems has been proposed by the authors [7] 
and is presented in Fig. 1. The concept approaches the 
subject by predicting the heat demand and then 
optimizing the heat production utilizing demand side 
management (DSM). DSM refers to the change in 
energy consumption by the end user in response to the 
changes in the price or the production of the energy [8]. 
However, city level consumption forecasts can be 
extremely time-consuming if the simulations are done 
on a single building level, due to data gathering, 
simulation and monitoring efforts and the estimation of 
uncertainties [9]. Consequently, forecast models are 
widely used for individual buildings, but their 
application at the large scale is lacking [9–11]. It has 
been even stated that it is impossible to model every 
building separately, one of the main reasons being the 
lack of real measurement data [12]. However, today 
many buildings are equipped with smart meters that 
record heat consumption in intervals of an hour or less. 
Furthermore, model predictive control (MPC) has been 
one of the most studied control strategies for buildings 
during the last decade, offering an efficient way to 
perform demand response actions in buildings, but the 
amount of modelling work required makes the 
implementation expensive [13–15]. Ease of modelling 
would make the forecasting of heat demand and the 
implementation of predictive control strategies at the 
building and city level more cost-effective. In this 
regard, the applied models have to be easily 
reproducible for multiple buildings. This sets 
requirements for the simplicity and ease of 
parametrization of the models. The straightforward 
implementation in real applications should also be kept 
in mind. In modern automation, the cost of 
implementation work plays a key role while the cost of 
the hardware is decreasing. 

In this work, the developed modelling approaches 
are presented to realize the predictive optimization 
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concept illustrated in Fig. 1. Then, the application of the 
developed modelling methods to optimize the heat 
demand at city level are discussed. 

2 Modelling 

Models are the basis for any MPC. Straightforward 
modelling methods would enable MPC to be 
implemented in buildings at city level. The concept 
presented in Fig. 1 builds on the forecast of the heat 
demand of individual buildings thus enabling DSM. 
Many of the previous works have considered only the 
total heat demand forecast of a district heating system. 
These approaches would not enable DSM actions as 
forecasts for the heat demands of individual buildings 
are not included. Furthermore, when optimizing the 
heat demand utilizing DSM, maintaining the indoor 
temperature at an acceptable level in buildings is 
important as the control actions should ensure the 
quality of the living conditions for the residents. 
Therefore, a mathematical model for the indoor 
temperature of a building is critical for enabling control 
and optimization strategies aiming at higher energy 
efficiency [16]. 

2.1 Forecasting the indoor temperature 

For wide use of any indoor temperature model, it 
should be applicable to different types of buildings with 
minimum extra implementation work. However, most 

of the research have focused on a single building for the 
development and testing of the models. Furthermore, 
many of the models found in the literature need 
detailed information about the building properties and 
large amount of representative measurements 
together with many parameters. All of this would 
increase the complexity and the implementation work 
of the models thus limiting their application to different 
buildings in real environments. If the models are only 
tested in one building, it is very much possible that they 
cannot be transferred directly to another building. Then 
it comes to the amount of work needed to transfer 
these models into the different buildings. If the model 
is to be used only to control an individual building, the 
implementation time will not necessarily be an issue. 
However, as the intention of the authors is to perform 
the optimization of the heat demand at district and city 
level, the short implementation time for the model is 
crucial. When the model is implemented in hundreds or 
thousands of buildings, days of modelling work on one 
building is not acceptable. 

To overcome these modelling issues, a new dynamic 
modelling approach was developed to predict and 
optimize the indoor temperature in large buildings [17]. 
To ensure the model generalizability to the whole 
building stock with reasonable prediction accuracy, the 
modelling approach combines easily available, existing 
measurements, building information and tabular values 
while minimizing the number of model parameters and 
inputs. A low number of parameters, easily available 

 
Fig. 1. Concept for the predictive optimization of the heat demand. 
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measurements and generalizable model structure 
make the parameter identification of the model easy in 
comparison to present modelling methods. The 
average relative modelling error of the developed 
model was below 5%. The results confirmed that the 
model can be used to predict and optimize the indoor 
temperature in large buildings.  A low number of 
needed measurements and generalizable model 
structure would allow the implementation and 
adaptation of the model to a wide variety of different 
buildings as a part of city level energy optimization 
concepts. 

2.2 Forecasting the heat demand 

Most of the studies that have considered heat demand 
forecast in individual buildings have had only one 
building for the model development and testing. 
Application of the models to a larger building stock 
using the same model structure would not necessarily 
result in the same accuracy. Some studies have also 
utilized data from simulated buildings. Then the model 
performance in real buildings may remain 
questionable. Although, there are studies that have 
considered more than one real building, there appears 
to be no study where hourly heat demand for a large 
district heating system has been forecasted utilizing 
models for real individual buildings. 

Considering the above, two different 
straightforward modelling approaches were developed 
to forecast the hourly heat demand at city level 
considering more than 4000 individual buildings [18]. 
The proposed modelling approaches forecast the heat 
demand for individual buildings and at city level, 
enabling DSM. The results showed that the relative 
error was 4% for the city level heat demand forecast. 
Low amount of estimated parameters reduced the 
calculation time and easily attainable measurement 
data facilitates the implementation of the models for 
thousands of buildings. 

3 Optimization of the heat demand 

Today the heat demand for district heating is 
forecasted based on the outdoor temperature. This 
forecast is for the production of the heat and does not 
take into account the real heat demand of the buildings 
that the heat is being provided to. This result in non-
optimal heat production. Furthermore, the lack of 
information from the consumption side prevents any 
DSM actions that could provide flexibility for the heat 
production. Heat demand forecast based on the 
forecasted heat demand of individual buildings 
together with the information on the indoor 
temperature of the buildings would enable different 
DSM action as presented in Fig. 2. These include peak 

load cutting, the minimization of the heat demand and 
timing of the energy production. 

 
Fig. 2. Different optimization strategies for heat 
demand enabled by the demand side forecast. 

3.1 Peak load cutting 

Peak loads refer to times of high energy consumption 
that exceeds the production capacity of the power 
plant. The heat demand forecast would be used to 
identify these peak loads before they happen and the 
thermal mass of the buildings could be used to cut 
them. Fig. 3 shows an example of the peak load cutting 
by utilizing the thermal mass of buildings by preheating 
them thus lowering the heat demand during the 
forecasted peak load. It should be noted that the total 
heat demand remains similar in both cases. So there are 
not necessarily any direct benefits to building owners, 
rather the benefits are for the heat producer for not 
needing to start auxiliary power plants which would 
increase the production costs. However, it should be 
noted that this is highly case dependent and there 
could be energy savings when applying peak cutting. 
This could happen if buildings are already overheated 
or the outdoor temperature profile is favorable. This is 
also highly dependable on the allowed indoor 
temperature limits. 

 
Fig. 3. An example of the peak load cutting. The black 
line is the heat demand without peak load cutting and 
the red dashed line is the heat demand with peak load 
cutting. 
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Simulations of different peak load cutting scenarios 
have been performed in two apartment buildings by 
utilizing the developed indoor temperature model [19]. 
One building was built in 1972 and the other in 2011. 
The results showed that the studied buildings had very 
different heat storage capacities. In the newer building, 
even 70% peak load cuts were possible without 
compromising the indoor temperature. However, in the 
older building 30% peak load cuts decreased the indoor 
temperature below the desired level. The results 
confirmed that the system level effect of peak load 
cutting cannot be concluded based on the results of a 
single building. Only by investigating systems with 
multiple buildings, the city level peak load cut capacity 
utilizing heat storage in buildings can be reliably 
evaluated. 

3.2 Minimization of the heat demand 

Optimization strategy that would have direct benefit 
for the building owners would be the minimization of 
the heat demand. This requires knowledge about the 
indoor temperature inside the building and its future 
projections. The minimization of the heat demand 
would be enabled by more stable indoor temperature 
control taking better into account the future outdoor 
temperature for example avoiding overheating when 
the outdoor temperature is rising. Fig. 4 illustrates what 
the result of minimization of the heat demand could be 
at city level. Again, to have an effect on the city level, 
the method would need to be implemented in multiple 
buildings. 

 
Fig. 4. The minimization of the heat demand. The black 
line is the heat demand without minimization and the 
red dashed line is the heat demand with minimization. 

Preliminary results from a field test, where the 
optimization of the heat demand was performed in a 
school building, showed that significant savings in heat 
consumption and reduction in peak loads are possible 
[7]. Compared with the reference day, 14% energy 
savings were achieved in one day by optimizing the 
heat demand. It meant 1 MWh reduction in the heat 
consumption and additionally an average of 25% cut in 
peak loads. This demonstrates that there is a huge 
energy saving potential in the heat demand of 
buildings. 

3.3 Timing of energy production 

The timing of energy production refers to the timing of 
electricity production in combined heat and power 
(CHP) plants. At favorable times, electricity production 
could be increased and the extra heat could be stored 
in the buildings. As the trading in the Scandinavian 
electricity market is performed one day in advance, the 
predictive information on the heat demand and indoor 
temperature of the buildings is crucial. 

3.4 Realization of the concept 

In the context of the concept in Fig. 1, all the 
aforementioned predictive optimization strategies 
would utilize buildings as short term heat storages 
which is an effective and efficient way to store heat [20, 
21]. It is well known that the peak loads can be cut, the 
indoor temperature swings can be reduced and the 
time of the heat demand can be shifted by utilizing 
buildings as short term heat storage [22–26]. As the 
heat storage capacity of buildings is already existing, 
only proper ways to utilize it are needed. The easily 
adaptable models discussed in Section 2 [17, 18] would 
enable the application of the predictive optimization 
methods to the whole building stock providing 
predictive information on the heat demand and indoor 
temperature in buildings. The optimization could be 
implemented as a continuous process where the 
buildings minimize their own heat consumption while 
maintaining the living comfort. On the other hand, the 
heat demand forecast model could also be used to 
provide predictive information on the future heat 
demand and DSM actions could then be executed when 
needed. This could be related to peak load cutting or 
timing of electricity production in case of CHP plants. Of 
course these two approaches could be combined. In 
any case, the full realization of the concept would 
require proper real-time and two-way information flow 
through the whole energy chain. 

4 Conclusions 

Computational methods for the predictive optimization 
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of the heat demand to increase energy efficiency in 
heating have been developed. Models for the indoor 
temperature and heat demand have been developed. 
The developed indoor temperature model can predict 
the indoor temperature in buildings with under 5% 
relative error. The average relative error of the total 
heat demand forecast was 4%. The utilization of 
buildings as short term heat storages to optimize the 
heat demand have been discussed. Simulations and the 
performed field test have shown that the buildings can 
be used for short term heat storage to achieve 
significant reduction in peak loads and an increase in 
energy efficiency by applying the developed modelling 
methods. 

In conclusion, the presented modelling approaches 
enable the city level optimization of the heat 
consumption due to their reproducibility and accuracy. 
However, the realization of the concept requires proper 
real-time and two-way information flow through the 
whole energy chain. In addition, although the 
simulations with real data give valuable information on 
the feasibility of the developed methods, more actual 
testing in the real environment would be crucial to 
commercialize the results. 
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