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• Energy system modelling
• Smart grids and electricity markets
• Wind and solar power generation
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storage methods (PtX)
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and mobile applications 
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RESEARCH LABORATORIES FOCUS ON THE  ELECTRIFICATION OF 
THE WHOLE ENERGY SYSTEM



RENEWABLE ELECTRICITY GENERATION AND STORAGE
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Key research topics:
§ Hydrogen production by water electrolysis and different power-to-

x processes
§ Use of solar and wind power in different applications
§ Electrochemical energy conversion and storage methods 
§ Energy efficiency in pumping, compressing and fan systems
Research objectives:
§ Optimization of the cost and energy efficiency of water 

electrolysis-based hydrogen production by different means, at 
system, stack and at cell level.

§ Study and verification new power-to-x concepts having a 
remarkable potential in energy transition

§ Improvement of profitability of solar PV based power generation in 
buildings by optimal system design, dimensioning and control

§ Optimization of life-cycle cost of electrical motor-driven pump, fan, 
and compressor systems

Research methods:
§ Wide range of different methods, e.g. modelling, simulation, 

optimization, estimation, identification, control, laboratory 
experiments, proof-of-concepts

Department of Electrical Engineering | Renewable Electricity Generation and Storage
Jero Ahola ► jero.ahola.@lut.fi            @JeroAhola

Neo-Carbon Food Pilot site at LUT Campus in June 2019. Photo: Teemu Leinonen
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Electric power system will become the main energy system
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EMISSION-FREE 
POWER GENERATION

NEO-CARBONISATION 
BRIDGING

STORAGE

Current 
business

New business 
opportunities

FLEXIBILITY
http://www.neocarbonenergy.fi/library/reports/



Opportunity: Green hydrogen will be a key element in 
the production of sustainable fuels, ammonia, and 
steel
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Source: The Dena Global Alliance Powerfuels Report, available at:
https://www.powerfuels.org/fileadmin/powerfuels.org/Dokumente/Global_Alliance_Powerfuels_Study_Powerfuels_in_a_Renewable_Energy_World.pdf



Inter-continental flying will be based on liquid fuels 
also in foreseeable future
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Electric flights at distances < 600 nmil (1100 km) 
~15 % of total fuel consumption of battery energy 

density 800 Wh/kg will be reached

Source: Andreas W. Schäfer, et. Al., Technological, 
economic and environmental prospects of all electric 
aircraft, Nature Energy, Vol. 4, February 2019, pp. 160-
166.



Opportunity: Electricity cost in hydrogen production is the 
most important factor in PtX fuels and chemicals production 
costs
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Source: http://www.neocarbonenergy.fi/wp-content/uploads/2016/02/13_Fasihi.pdf

Baseload 
electricity 
cost

Hydrogen: 
1.5 * 
electricity 
cost 

Ammonia: 2.6 * 
electricity cost (not 
dependent on CO2
DAC

Methanol: 2.9 
* electricity 
cost, (easily 
transportable 
liquid)

FT-fuels: 3.3 * 
electricity cost, 
(energy dense liquid, 
easy to transport)



Opportunity: Global demand of PtX fuels net-zero emission 
energy system in 2050 will be enormous
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*Primary 
energy 
consumptio
n in Finland 
in 2020 was 
378 TWh

Source: The Dena Global 
Alliance Powerfuels
Report, available at:
https://www.powerfuels.o
rg/fileadmin/powerfuels.o
rg/Dokumente/Global_All
iance_Powerfuels_Study
_Powerfuels_in_a_Rene
wable_Energy_World.pdf

Point sources will 
cover up only 
20% of CO2
demand. CO2 
DAC needed.



Opportunity: Estimate of industrial hydrogen demand in 
Europe from 2020 to 2050 [TWh/a]

10Source: Agora Energiewende, No-regret hydrogen, Charting early steps for H2 infrastructure in Europe, 2021 



Projected hydrogen demand in Europe [TWh/a]

11Source: Agora Energiewende, No-regret hydrogen, Charting early steps for H2 infrastructure in Europe, 2021 



Competition: Global wind and solar power public 
PPA contract prices
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©  FreePowerPointMaps.com
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Green hydrogen production technologies
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Water electrolyzer system level 
and most prominent electrolyzer 
cell technologies
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Source: IRENA (2020), Green Hydrogen Cost Reduction: Scaling up Electrolysers to 
Meet the 1.5⁰C Climate Goal,
International Renewable Energy Agency, Abu Dhabi



Production of green hydrogen by alkaline water 
electrolysis
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Summary:
• Located in Kokkola, Finland
• Power-to-Hydrogen: 1800 Nm3/h (H2)
• 3x3 MW pressurized alkaline water 

electrolyzers, 3x600 Nm3/h, 16 bar (H2)
• The main use of H2 plant is at nearby 

Cobalt plant, hydrogen delivery by a 
pipeline

• The rest of H2 compressed to 200-300 
bar and stored  in bottles for delivery with 
trucks



Path down to 1 USD/kgH2 production
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Source: IRENA (2020), Green 
Hydrogen Cost Reduction: Scaling 
up Electrolysers to Meet the 1.5⁰C 
Climate Goal,
International Renewable Energy 
Agency, Abu Dhabi



Green hydrogen production cost evolution
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Source: IRENA (2020), Green Hydrogen 
Cost Reduction: Scaling up Electrolysers
to Meet the 1.5⁰C Climate Goal,
International Renewable Energy Agency, 
Abu Dhabi

Addition: blue hydrogen 
cost range estimate 
(methane pyrolysis -> 
H2 + solid carbon)

Note: Efficiency at nominal capacity is 65%, with a LHV of 51.2 kWh/kgH2 of hydrogen (kWh/kg H2) in 2020
and 76% (at an LHV of 43.8 kWh/kg H2) in 2050, a discount rate of 8% and a stack lifetime of 80 000 hours. The electrolyser
investment cost for 2020 is USD 650-1000/kW. Electrolyser costs reach USD 130-307/kW as a result of 1-5 TW of capacity
deployed by 2050.



Competitivity of hydrogen production including SMR with CCS

18Source: Agora Energiewende, No-regret hydrogen, Charting early steps for H2 infrastructure in Europe, 2021 

Hydrogen 
production from 
natural gas by 
steam-methane 
reforming with CCS  
competitive only in 
very short-term. 



Hydrogen transmission and storage
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Hydrogen storage utilization in Europe
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Source: Agora Energiewende, No-regret hydrogen, Charting early steps for H2 infrastructure in Europe, 2021 

The number of 
cycles and storage 
need lower South-
Europe than in 
North Europe.



In energy terms 
this equals to 4 
€/MWh/1000km

European Hydrogen Backbone Report
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Levelized cost of hydrogen transport through 
pipeline infrastructure 1000 km (1 kgH2 = 33 
kWh)

Source: European Hydrogen Backbone 
Report, July 2020, available: 
https://gasforclimate2050.eu/news-item/gas-
infrastructure-companies-present-a-
european-hydrogen-backbone-plan/



Bulk hydrogen storage in underground salt cavern
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Cavern construction: Geological 
survey ; bore and installation of 
production tubing ; solution 
mining ; de-brine and 
mechanical integrity tests
Base parameters: cavern roof 
depth 800 m ; pressure 120 bar 
; 30 % cushion gas ; volume 80 
000 m3 ; 1 mile pipeline to 
facility
Main costs: cavern construction, 
brine disposal, above ground 
facility

Source: R.K. Ahluwalia, et. Al., System Level Analysis of Hydrogen Storage Options, 2019 Annual Merit Review and 
Peer Evalauation Meeting, Washington, D.C., 2019



Bulk hydrogen storage in lined rock cavern
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Used for storing compressed natural gas in 
Skallen in Sweden since 2003
Parameters: volume 40 000 m3, vessel height 
52 m, vessel diameter 36 m, distance from 
surface 115 m, access tunnel 1 km, storage 
pressure 150-200 bar
Main cost elements: cavern excavation, access 
tunnel, concrete and steel lining
Enables high-purity storage of H2. In salt 
caverns problems may arise.

Sources: R. Glamheden, P. Curtis, Excavation of a cavern for high-pressure storage of natural gas, Tunneling and 
Underground Space Technology 21 (2006) 56-67.  
R.K. Ahluwalia, et. Al., System Level Analysis of Hydrogen Storage Options, 2019 Annual Merit Review and Peer 
Evalauation Meeting, Washington, D.C., 2019



Bulk hydrogen storage – Salt caverns and lined rock caverns
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In scale of 1000 tH2 
(33 GWh, LHV)
CAPEX of lined 
rock cavern 
hydrogen storage:    
~1.5 €/kWh 
Capex of battery 
energy storage: 
200-500 €/kWh 

Source: R.K. Ahluwalia, et. Al., 
System Level Analysis of 
Hydrogen Storage Options, 
2019 Annual Merit Review and 
Peer Evalaluation Meeting, 
Washington, D.C., 2019



Grid balancing with hydrogen
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Example: Wind power generation variation in Finland 
1.2.-5.3.2020
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GRID BALANCING: There is no single solution for an 
energy storage
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Lithium-ion

Compressed air 
energy storage
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Flow batteries

Hydrogen storage
Pumped hydro 

storage

PtXtP (CH3OH, CH4, NH3, etc)

20-45 %

70-85 %
45-70 %

85-95 %
Typical 
round-trip
efficiency

Grid support & balancing

Fly wheelSuper capacitor

Bulk power

>100 TWh in 
hydro 
reservoirs in 
Nordic area

The largest one Yllikkälä
Power Reserve in 
Lappeenranta in Finland 
(30 MW/30MWh)

Global energy storage project database (by US DOE): https://www.sandia.gov/ess-ssl/global-energy-storage-database-home/

Business as 
usual with 
fossil fuels



GRID BALANCING: Li-Ion batteries and hydrogen are expected to become 
winners as energy storages providing grid services
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7 8 9

5.11.2021
Source: Oliver Schmidt, Sylvain Melchior, Adam Hawkes, Lain Staffer, Projecting the Future Levelized 
Cost of Electricity Storage Technologies, Joule 3, 81-100, January 16, 2019.



Project P2X Joutseno
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Project P2X Joutseno: Industrial-scale PtX pilot –
Feasibility study and development
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• The  main objective was to study the feasibility and profitability
• Costs and technologies based on budgetary offers

• Main feedstocks:
• Hydrogen (H2) 5 000 t/a, (Chlor-Alkali electrolysis, Kemira 

Chemicals
• Carbon dioxide (CO2) 36 667 t/a,  Finnsementti

• End products:
• Metanol 26 667 t/a (~1000 truck loads)
• Refining of methanol into gasoline, diesel and kerosene through 

different routes (MeOH + MTG, MeOH + MTO-MOGD) 
• LUT partners:

• St1 Oy, Kemira Oy, Wärtsilä, Finnsementti Oy, Shell Long Term 
Research, Neste Oyj, Finnair Oyj.

• City of Lappeenranta
• Local machine workshops

• Funders Etelä-Karjalan Liitto, LUT and companies



P2X Joutseno – Studied processes

3118.03.2020
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MeOH + MTG 
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MeOH + MTO-MOGD 
Total mass flow rate (kg/hr)

Thermal power (MW) Thermal power (MW)

Total mass flow rate (kg/hr)

60% (Gasoline)
75 % (All)

20% (K)
70% (G,D,K)
79 % (All)



Techno-economics
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Base case
Electricity price €/MWh) 20 30 40 50
IRR (investor) 14.4 % 13.3 % 12.1 % 11.0 %

Hydrogen price (€/MWh) 10 15 20 25 30
(€/kg) 0.3 0.5 0.6 0.8 1.0
IRR (investor) 16.7 % 12.1 % 7.3 % 2.1 % -3.9 %
Total investment
(reserve) -30 % -15 % 0 % 15 % 30 % Note that base case includes a 15% reserve

IRR (investor) 43.9 % 27.4 % 18.2 % 12.1 % 7.8 %
Gasoline (€/tn) 1000 1200 1300 1400 1600 1800 Fossil price + biofuel premium. German biofuel premium price 

has been above 400 €/tonCO2 between early November 2019 
and late April 2020 (STX, 2020).IRR (investor) -9.1 % 3.0 % 7.7 % 12.1 % 20.5 % 28.4 %

Debt rate 1 % 2 % 3 % 4 % 5 % Debt ratio is assumed to be 70% of total investment after 
subsidiesIRR (investor) 13.3 % 12.1 % 11.0 % 10.0 % 9.0 %

O&M 2% & 3% 3% & 4% 4% & 5% Operation as % of actual revenue, maintenance as % of 
technical investment

IRR (investor) 12.1 % 7.8 % 3.3 %

Operation time (h) 6000 7000 8000
IRR (investor) 2.2 % 7.4 % 12.1 %
Investment subsidy (TEM) 30 % 40 % 50 %
IRR (investor) 9.1 % 12.1 % 15.9 %

No hydrogen from electrolysis



Carbon neutral Finland report
Press release and report available at: https://www.lut.fi/web/en/news/-
/asset_publisher/lGh4SAywhcPu/content/lut-wartsila-and-st1-power-to-x-solutions-
should-be-raised-to-the-core-of-finland-s-energy-and-climate-solutions
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Background and assumptions
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Strategic level study: the main emphasis is in electricity demand, production and 
transmission
The main objective is to study the recycling of CO2 from point sources into fuels 
with PtX: How it affects the electricity consumption. Only hydrogen production 
with water electrolysis is taken into account. 
Other assumptions: Reforming of H2 from natural gas ends (~600 MW)
Heating is assumed to be electrified by heat pumps.



Implications to national economy
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Investments:
• Fuel manufacturing plants 10-20 billion EUR (50-100 % bio-CO2)
• Wind power plants 25 – 50 billion EUR
• Electricity and hydrogen transmission infrastructure
Profits:
• Emission reductions – carbon neutral Finland
• No need for transportation fuel imports – 5 billion EUR/a
Thousands of new jobs, especially in regressive areas
• Land leases
• Tax incomes



Electricity demand – All bio-CO2 into fuels
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Current wind power projects
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Implementation: 4,2 GW ; 12 TWh/a (35%, 8670h, 4MW)
Planned: 12,3 GW ; 37 TWh/a (35%, 8670h, 4MW)
Totally: 50 TWh/a.

     
Onshore Projects MW WTG 

 

6 Under Construction 10 378 85 
5 Fully Permitted 74 3849 945 
4 Land Use Plan or STR Done 48 3177 754  
3 STR Process Ongoing 1 18 4  
3 Land Use Plan Proposal 15 1491 247  
3 EIA Done 6 494 83  
2 Land Use Plan Draft 4 222 44  
2 EIA Process Ongoing 4 1120 212  
1 Land Use Plan Process Started 9 1055 205  
0 Identified Project / Pre-Screening 30 1153 306  
In Total 201 12957 2885  
     
     
Offshore Projects MW WTG  
4 Land Use Plan or STR Done 3 820 166  
3 EIA Done 4 1920 140  
0 Identified Project / Pre-Screening 3 820 105  
In Total 10 3560 411  

 



On-shore wind power potential
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47 000 km2

33 000 km2

12 000 km2

14 000 km2

18 000 km2

No of 
units AEP/alue

km2 m/s 10 % GWh/unit TWh/a GWh/unit TWh/a
Pohjois-Lappi 47 000 8,0 9,0 8,7 10,0 4700 21,0 22,25 99 105 22,3 22,3 105 105
Kainuu & Etelä-Lappi 33 000 8,0 8,8 8,7 9,8 3300 21,0 22,25 69 73 22,3 22,3 73 73
Etelä-Karjala & Savo 12 000 8,0 8,7 8,7 9,5 1200 21,0 22,25 25 27 22,3 22,3 27 27
Etelä-Suomi ja Kymi 14 000 7,5 9,0 8,8 9,8 1400 19,2 22,25 27 31 22,3 22,3 31 31
Varsinais-Suomi ja Etelä-Pohjanmaa 18 000 7,9 8,5 8,6 9,6 1800 20,5 22,25 37 40 22,3 22,3 40 40

124 000 12 400 257 276 276 276

Production 
150 m

Production 
200 mHeight 150

Height 
200Source: https://globalwindatlas.info/ 

Assumptions: 1 turbine/km2, filling ratio 10% in selected areas, the whole country level filling ratio 3,7 % + current construction. 
Danish objective 2030 is 4,1 % of land area for filling factor. Capacity factor 53%




