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Predicting the electricity consumption of Finland
Abstract: This paper evaluates the performance and
computational requirements of seven different machine
learning (ML) algorithms to predict the electricity con-
sumption of Finland. The forecasted period is 24 hours
into the future using 24 hours of historical data as an
input. The tested ML algorithms were linear regression,
random forest (RF), gradient decent regression, support
vector regression, multilayer perceptron, convolutional
neural network (CNN), and WaveNet. A dataset was
constructed by combining three data sources containing
historical data about the electricity usage, weather, and
industry turnover. The CNN model achieved the best
results with both RF and WaveNet in the second place
with comparable performance to each other.
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1 Introduction
Knowing the country’s next day electricity consumption
in advance would be advantageous. To keep the power
infrastructure running a balance needs to be kept be-
tween the electricity production and consumption. If
the electricity consumption is known in advance, the
production can be planned ahead of time with optimal
resources. Electricity consumption prediction is not a
new concept. Prior art can be found, such as [5], where
the authors tested different machine learning (ML) algo-
rithms to predict the power consumption of a university
campus. In this study we benchmark different ML algo-
rithms to predict the electricity usage of Finland for the
next 24 hours.

2 Materials and Methods

2.1 Dataset

The dataset was generated by combining three open ac-
cess dataset sources. The electricity consumption of Fin-
land was obtained from the open access download portal
hosted by the Finnish national grid operator Fingrid [3].
The data is recorded with one hour interval and includes
the total electricity consumption in Finland in MW h/h.

This data was enriched with weather data from
Helsinki-Vantaa Airport weather station. Weather
changes the heating and cooling requirements of build-
ings; therefore, it is an important variable to convey
for the models. The data was obtained from an open
access portal hosted by the Finnish Meteorological In-
stitute [4].

The industry accounts 45% of total electricity usage
in Finland [12]. The assumption was that the industry
uses less electricity during economic depression, thus the
industry turnover was used to convey this information
for the models. The data was obtained from Statistics
Finland open access portal [11].

Finally, the dataset was supplemented with the in-
formation about holidays, time of the week, and the
time of the year. Time of the week and time of the year
were encoded using the cyclical feature sin/cos encoding
technique [8]. The encoding aids the models to under-
stand cyclical features such as the time of the week and
time of the year. With naive encoding method, where
the week times are converted to numbers ranging from
1 to 168 (168 hours in a week), Monday 1 hour past
the midnight is encoded to 1, and Sunday 1 hour to
midnight is encoded to 167. The numbers are far apart
although in the weekly cycle the times are right next to
each other. Converting the time of the week to vectors
using the sin/cos method solves this problem.

The dataset consists of a set of input/target sam-
ples. The objective was to predict the electricity con-
sumption for the next 24 hours, thus the targets were
vectors with the length of 24. The length of the input
was likewise set to 24 hours, producing input matrices
with a size of 24 × 19 where the final features were:

– Electricity consumption
– Air temperature
– Air temperature for the next day
– Wind speed
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– Wind speed for the next day
– Direct solar radiation
– Snow depth
– Snow depth for the next day
– Industry turnover
– Time of the year (sin/cos encoded)
– Time of the year for the next day (sin/cos encoded)
– Time of the week (sin/cos encoded)
– Time of the week for the next day (sin/cos encoded)
– Days until the next holiday
– Days until the next holiday for the next day

For the models that do not support multidimensional
input, the input matrix was squashed to a vector with a
length of 456. For the CNN model, the input matrix was
constructed without separating the next day’s features
(air temperature, wind speed, snow depth, day of the
week, days until the next holiday) to a separate feature.
Instead, the input was constructed for 48 hours making
the input matrix to be 48×11. The features that did not
have known forecasts for the next day (electricity con-
sumption, industry turnover and direct solar radiation)
were set to zero for the hours from 25 to 48.

The generated dataset spanned the period from the
1st of January 2013 to the 10th of December 2019. The
data from the year of 2019 was reserved for testing and
all other data was added to the training dataset. The
samples were generated using rolling window method
where the first 24 hours were used as the input and the
following 24 hours were used as the target. The next
sample was generated by shifting the window one hour
over and this was repeated until reaching the end of the
dataset. The final dataset consisted of 43, 800 and 8, 760
samples in train and test datasets respectively.

2.2 Models

The tested ML models were linear regression (LR), ran-
dom forest (RF), gradient descent regression (GRR),
support vector regression (SVR), multilayer percep-
tron (MLP), convolutional neural network (CNN), and
WaveNet [9]. These are all well known ML models ex-
cept for the WaveNet that was added to the benchmark
because we had previous experience with the model. The
neural network models were implemented using Ten-
sorFlow deep learning framework [1], and for the other
models an existing implementation was used from the
scikit-learn ML library [10].

The random forest model was initialized with 100
estimators while all other parameters used the default

values. Likewise, all other scikit-learn models were ini-
tialized with the default values.

The MLP model was implemented using five fully
connected layers with batch normalization [6] and
ReLU [2] activation functions. The unit sizes for the lay-
ers were: 8, 16, 32, 64, and 24. The batch normalization
layer was located immediately after each dense layer be-
fore the activation function was applied. Final layer used
linear activation (no activation). Moreover, the model
included a dropout layer before the first dense layer.
The total number of trainable parameters was 8, 832.

The CNN model was implemented by stacking four
convolutional blocks. Each of the blocks were con-
structed from a convolutional layer, batch normalization
layer, and ReLU activation layer. The convolutional lay-
ers used 5 × 5 kernel size with stride 2 × 1. The number
of output filters in the convolutional layers in the differ-
ent blocks were 64, 32, 16, and 8. The total number of
trainable parameters was 114, 552.

Finally, the WaveNet model implementation was the
same as what was used in our earlier paper [7]. The total
number of trainable parameters was 1, 039, 872.

2.3 Experiment Setup

The models were trained using the train dataset and the
test dataset was used to compute the mean absolute er-
ror, median error, and maximum 97th percentile error
metrics. Moreover, the training and inference times were
measured. The error metrics were used to compare the
model performances, and the measured training and in-
ference times were used to compare the computational
requirements of the models.

3 Results
Figure 1 illustrates the accuracies of the different al-
gorithms. The CNN model achieves the highest perfor-
mance with the lowest scores in mean absolute error
and maximum 97th percentile error metrics. The CNN
model performance is substantially better in the max-
imum 97th percentile error metric when compared to
the other algorithms. The difference is not as large in
the mean absolute error metric with the WaveNet and
RF algorithms performing nearly as well. Likewise, the
median error metric of the CNN model is comparable
to the WaveNet and RF performance which outperform
the CNN model with only a small margin.
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Fig. 1. Accuracy comparison of the different algorithms using three metrics.

The LR, GRR, SVR, and MLP models have clearly
worse performance in all three metrics when comparing
to the three best performing models. However, even the
best performing models have more than 200 MW h/h
mean absolute error and median error, which is a large
error.

Figure 2 illustrates the predictions for the four best
performing models to the test dataset in the year 2019.
The plot is smoothed using a 48-hour sliding window
that is defined in the Equation 3 where X is the orig-
inal signal, n is the length of the signal, and X̂ is the
smoothed signal.

X = [x1, x2, ..., xn] (1)
X̂ = [x̂1, x̂2, ..., x̂n] (2)

x̂t =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

x1+...+xt+25
t+25 , if t < 24

xt−23+...+xt+25
48 , if t >= 24 and t < n − 25

xt−23+...+xn

23+n−t , if t >= n − 25
(3)

The smoothed signal illustrates better the model
accuracy when it is inspected at the span of a full year.
Normally the electricity usage includes large changes
during the day, thus at the year scale the signal would
appear very noisy. However, by smoothing the real and

predicted electricity usage signals, the daily accuracies
are better highlighted thus creating more readable plot.

Interesting phenomenon to note in the plots are
the deviations at the middle of the summer and large
variations during the winter. The large dip in the real
electricity usage at the center of the plot is positioned
around the midsummer festival which is an important
holiday in Finland. The large variations in the winter
are caused by weather changes where cold tempera-
tures cause raise in heating requirements, thus raising
the electricity usage.

The plots verify the observation that was deter-
mined from the collected metrics. The three best per-
forming models in Figures 2a, 2b, and 2c predict the
next day electricity usage better when comparing to the
fourth best performing model in Figure 2d. The differ-
ence is most obvious at the midsummer festival devi-
ation, where the MLP model fails completely to con-
sider the holiday and instead predicts the normal elec-
tricity usage pattern. Likewise, the RF model predicts
similar usage pattern to continue over the holidays with
small dip at the end. However, the two neural network
models create excellent predictions for the holiday. The
WaveNet model creates the best predictions for the win-
ter variations with good predictions in the beginning of
February where all other models struggle. All plotted
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(a) CNN (b) WaveNet

(c) RF (d) MLP

Fig. 2. Smoothed model predictions for the four best performing models to the year 2019 test data.

models have a clear tendency to overshoot the predic-
tions during summer and autumn months, however all
of them have learned to predict the weekly consumption
variation patterns.

In addition of computing the model performance
metrics, the training and inference times were also mea-
sured from all models. Table 1 lists the times for the dif-
ferent algorithms. Computationally the neural network
models are more demanding than the more traditional
ML models. Even though the neural networks can ef-
ficiently utilize GPUs, the training and inference times
are longer when comparing to RF model that runs on
CPU and has comparable performance.

Table 1. Computational Requirements.

Model Train time Inference time
CNN 5 min (GPU) 0.5 ms (GPU)
WaveNet 30 min (GPU) 85 ms (GPU)
RF 52 sec 0.35 ms
MLP 1 min (GPU) 0.5 ms (GPU)
LR 1 sec 0.04 ms
GRR 10 sec 4 ms
SVR 90 sec 3 ms

4 Conclusions
The CNN model worked the best for predicting the elec-
tricity usage for the next day. Comparable performances
were measured from the WaveNet and RF models. The
RF model is computationally less demanding when com-
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paring to the two other well performing neural network
models. Therefore, if the algorithm performance is an
important aspect, the RF model is a good option to
use. However, the more complex neural network mod-
els show better performance in predicting the electricity
usage on days with large deviations, such as the mid-
summer festival.

The goal of this research was to benchmark the ML
algorithms. Therefore, the study used a simple dataset
that contained only one weather station from the South-
ern part of Finland. However, Finland is a long country,
therefore only one weather station cannot convey the in-
formation about weather elsewhere in Finland. This is
not a problem in this study since all models were trained
on the same dataset, thus the results between the mod-
els are comparable and the best performing models can
be identified.

However, further study is needed to implement a
model that is more accurate and therefore usable in real
use-cases where electricity usage prediction is needed.
The number of weather stations should be increased to
convey more information about the weather in other
parts of Finland. The CNN model is the most promis-
ing of the tested models and it is likely that it can utilize
more input data to make better predictions. The model
has a good balance between performance and compu-
tational requirements, and the benchmark shows that
the model can learn complex information from the in-
put data to make more accurate predictions. Therefore,
improving the CNN model would be the recommended
choice for further studies in this topic.
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