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ABSTRACT 
Integrating machine-learning (ML) into automatic machines brings new capabilities and new constraints. This 

article highlights the specificities of these techniques and aims, thanks to a relevant case, to guide the machines 

designer, integrator and end-user through a safe practice. The whole approach is oriented towards the prevention 

of occupational risks related to machines. In other words, what are the safety impact of the learned automation 

compared to conventional automation? 

An online quality control application of organic products (such as fruit or wooden plank type) is used as an example 

for the design and safety integration process; advice and best practices for maintenance and operation are also 

provided. 

This article is based on (i) studies of safe design, including ML, carried out at the French occupational safety and 

health national institute (INRS), (ii) GEMMA, French guide of study of the operating and stop modes and (iii) 

experiments carried out at the machinery and automation safety laboratory of INRS. 

These topics are developed as followed: (i) the needs analysis, the proof of concept and the choice of the technical 

solution, (ii) the machine's life cycle phase related to the creation of a data bank, (iii) the "learning" operating 

mode, (iv) the performance analysis and validation, (v) the maintenance and (vi) the technical documentation. 

This guide emphasizes the study and the realization of the human/machine interface (with learned automation). 

This interface is a key factor of the success of safety integration. Nowadays, learning techniques do not directly 

integrate safety functions, but it is well-known that the lack of functional reliability of machines leads to human 

interventions that can be dangerous. 

1 INTRODUCTION 

The spread of « machine learning » algorithms has shown new opportunities in machinery automation. Today, 

automation can find its way in workshops and fields that were inaccessible before. The best example is the analysis 

of living things such as fruit and vegetables quality assessment on packaging line, and crop and weeds 

discrimination in the fields. 

Integrating this kind of technology into machine leads to deep modifications during design, integration and 

operation steps. This article aims to provide advice and warnings to integrate successfully AI embedded into 

machine. On following, to clearly distinguish machine learning based automation from conventional automation, 

these systems will be referred to as a learned automation (LA) control system. This document focuses on machine 

learning applied to computer vision onto automatic machinery. 

2 NEEDS ANALYSIS AND TECHNICAL SOLUTION. 

2.1 Needs analysis 

AI into machine is not a commercial argument! Even if it seems to be a token of high technology and high 

performance, embedding AI system into machine is first of all an answer to a technical need. Like any other 

functions of the machine, its use must be the result of a needs analysis and this technology must match the required 

function.  

Like any other function, the implementation of this algorithm is the outcome of a design process. This process is 

standardized in the ISO12100 [1] standard, which defines the general principles of machine design to reduce risks 

and thus ensures better safety. In this context, in 2021, ISO's work focused on the specific case of machines that 

embedded machine learning. This work is included in ISO/TR22100-5 [2]. This technical report concludes that 

the design method described in ISO12100 is suitable for machine learning except that AI does not evolve freely 

and is not implemented in the safety-related control system.  



Machine learning is a technique that allows an algorithm to infer behavior by aggregating a multitude of examples 

describing that behavior. Collecting these samples can be the first hurdle for this application. Especially in the case 

of supervised-learning, which involves labeling the training data. 

In this case, the obstacle of data collection can be expressed in terms of endeavor (cost). Then, the ratio of costs 

between the technical solution "Learned Automation" and "Conventional Automation" will be a key factor when 

choosing the technical solution. Indeed, when it is possible to carry out the program of the machine indifferently 

either by a program resulting from automatic learning or by a design approach of the automation engineer, the 

choice of the solution will go towards the easiest. 

2.1.1 Comparison between learned-automation and conventional-automation endeavor 

Overall, the LA solution requires providing a learning algorithm with input data associated with the expected 

outcome. At this stage, two sources of costs can be assessed: data production (collection if they already exist) and 

labeling (reward in the case of reinforcement learning). The comparison with conventional automation requires 

costs quoted in hours of labor, in any subcontracted resources or any other units. 

Then, we need to add the costs associated with automation equipment. This equipment probably comes from the 

information technology (IT). Accelerators of artificial neural network [3] (ANN) are available on the market. 

These computers with a massive parallel architecture will make carrying out learned automatisms possible. 

Thus, the ANN accelerator will be an integral part of the machine control system, but this device does not belong 

to operational technology (OT) but to IT.  

These two technologies are often difficult to interface, even if they have been getting closer for a few years. The 

use of middleware, such as Robot Operating System (ROS), or a field network on the Ethernet medium, such as 

Modbus TCP/IP, allows linking these two technologies. This new cost will be borne by the LA solution. 

Figure 1 shows the breakdown and comparison of the costs of each solution. The example presented shows that 

the distribution of automation design costs is radically different between the two solutions. These costs should be 

well assessed before choosing to develop a learned automation application. Of course, this comparison is only 

possible when both automation modes meet the specification requirements. 

The large dominance of the data production costs of the learning database shows the importance of automating 

data collection and labeling when possible. From the point of view of reducing machine risks, the simplest solution 

is also the safest because it requires less effort and less objects handling. 

 

 

Figure 1. Costs breakdown 

 

2.1.2 Asymmetry of expected outcome 

For a classification process, the confusion matrix is the only assessment tool of LA solution performances. In the 

case of two classes, for example: {"Good part"; "Bad part"}, this matrix is constructed as follows: 

Figure 2. Confusion matrix. 
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The system can make two different types of mistakes: 

 Predicting that a part is good when it is actually bad (false positive). In the case of a quality control 

application, such as detecting a foreign object in a food product, this error can have significant 

implications. This type of mistake is evaluated by the precision of the system (see Metrics). 

 Predicting that a part is bad when it is actually good (false negative). In the context of quality control, in 

production line of manufactured parts, this error can lead to the rejection of good pieces, resulting in 

important economic consequences. This error is rated by the sensitivity of the system (see Metrics). 

It is crucial to be aware of the process specificities that the algorithm is meant to handle; mistakes can generate 

risks. In the above examples, these risks are of a sanitary or economic nature. 

Note that precision and sensitivity of the algorithm are two independent indicators; the system can be optimized 

to improve one or the other. 

This issue is purely functional; however, a functional failure of a machine can generate operator’s actions to 

compensate the function. These can lead to risks for people.  

2.1.3 Proof of Concept (POC): How to ensure feasibility without a fully trained model? 

Demonstrating the feasibility of the learned automation at first is complex. Without providing a concrete proof of 

concept, series of experiments can be implemented to obtain a first idea of the performance of the learned function. 

A. Research by analogy 

Numerous applications based on machine learning are available. Their study can provide clues about the LA 

solution feasibility even if the field of application is different and if the destination of this application is not 

automation. 

B. Training data sample 

Evaluating the quantity of images required to achieve the expected performance is complicated. 

Of course, this quantity of images depends on the variability of good parts and how big is the fault on the picture 

to be detected. An experiment can be performed by simplifying the problem: (i) Select a small number of good 

parts with very low variability, (ii) also select a small number of bad parts, (iii) train the model with this simplified 

and reduced data set, (iv) create the confusion matrix and evaluate the performance of the system on this sample. 

Indeed this experiment does not represent the complexity of the problem as a whole. Nevertheless, the results of 

this trial will provide a start to feasibility assessment. Interpolating the results of this experiment to the full system 

is not linear. However, it is a first approximation. 

C. The field experience 

It would provide relevant lesson to compare the envisaged system with the professional practice carried out by an 

experienced operator. If the human picture observation cannot detect the non-conformity, the LA system will not 

be able to do so. This is a key factor for a good performance. Lighting (highlighting the non-conformities by 

contrast), adapted image resolution, wavelengths of captured light, framework, background plan, etc., are factors 

that - when optimized - will improve the performance of the system. Thanks to the human sense of visual 

perception, these topics can be finely adjusted. 

However, computer vision systems based on machine learning, unlike humans, have difficulty focusing their 

processing on the useful part of the image presented to them. The creation of a third class of data can be a solution: 

the "Background" class. This involves creating a training image database as follows: {"good parts"; "bad parts"; 

"Background"}. This last class will contain photos of the conveyor belt without any parts. The model thus trained 

will better distinguish the conformity of parts by suppressing the background variability. These practices can be 

implemented for the feasibility studies. 

2.2 Technical solution 

The technical solution of the AI system is evaluated as follows: 

 First in terms of relevance, is it appropriate to use this technique for this problem?  

 What is the cost endeavor required compared to a conventional solution? 

 Is the system's reliability compatible with the expected function? 

 Then, it is necessary to study feasibility, especially by evaluating the ability of the future model trained 

before having all the training data. 

Assuming all this is in place, the machine design can begin. An indisputable proof of concept will provide a solid 

base for the safe design of the machine. It is interesting to note, this technology will modify some phases of 

machine life. 



3 Phases of machine life 

The phases of machine life, or more precisely, the phases of the life cycle of a machine as described in ISO12100 

[1], will not be fundamentally modified by the implementation of the LA system. However, they may be impacted, 

like in the "Setting / Learning / Programming" phase which will have to integrate a new task: building the data 

bank. 

Programming Phase - Data Bank Building Task 

As mentioned in the section Comparison between learned-automation and conventional-automation endeavor the 

task of building the data bank represents a significant work in the machines programming phase. This work may 

require handling many parts, setting up and carry out many hours of shooting. Additionally, labeling the collected 

images will further increase the workload. 

However, the future machine will have the ability to handle and take pictures of parts itself. Using this future 

ability will automate the data bank building task. Thus, it may be interesting to create a machine designed to train 

the machine. Of course, these two machines, defined for two different applications, will become one! The life 

phases will be different. In short, only one machine for two different defined applications. 

The example of a vision quality control machine for parts handled on a conveyor belt illustrates this principle as 

follow: This machine will have at least a feeder, a computerized imaging device, and a sorting device at the 

conveyor output to separate conform from non-conform parts. All this will ensure quality control and then thanks 

to the creation of a specific function, building the data bank. For this, the LA system will incorporate a new 

automatic mode: the learning mode. 

4 Operating Modes 

The study guide for operating and stop modes (GEMMA) [4] proposes a technique to analyze machine operating 

on and off modes. These modes are represented in the shape of a block diagram in two main parts: the control part 

(CP) and the operative part (OP). The control part gathers pre-actuators (such as hydraulic and pneumatic valves 

and power stages of the frequency inverters). This part controls the energies and the movements of the machine. 

The OP, on the other hand, manages the logic of the machine, its status, and its sequences. 

For the OP, GEMMA groups the status (procedures) into three families: F: operation, A: stops, D: failures. 

In this paper, Fig. 3 illustrates the families of procedures for an automated machine. Specifically, the family of 

operating procedures includes a sub-family of tests and verifications, including the following procedures: 

 F4: operating verification without order. Commonly referred to as manual mode, this mode is used to 

check the operating status of one or a few components. It is considered as servo-controlled if the controls 

(combinatorial only) of the actions are carried out by the OP. This mode cannot be activated during production. 

 F5: Operating verification with order. This "step-by-step" mode allows the machine's functions to be 

checked in the order of the production sequence but without automatically chaining them. 

 F6: Test run. This mode is designed to isolate a component from normal production operations in order 

to test, adjust, calibrate, etc. 

Fig. 3 shows the operating procedures as defined in the GEMMA guide. Procedure F7 has been added to the Tests 

and Verifications sub-family. Under certain conditions, this procedure (mode) can be activated during production. 

However, it does not belong to a normal operating mode. 

 

 

Figure 3. GEMMA - Learning mode in the operating part. 

4.1 Learning mode 

The Learning mode intends to provide the ML algorithm with the necessary data for training. Its integration into 

the machine's operating modes enables at least partial automation of the training data collection. 

The previously described quality control machine could have this mode. This is an automatic mode where the 

machine manipulates the parts and takes the pictures. The resulting images are simply recorded to complete the 

database that will be used during the algorithm's training phase. 



This automatic mode is a major contribution to the safety of the machine operators. Indeed, if these tasks were 

carried out manually, they would generate a lot of part handling and non-productive actions. 

Of course, when using the learning mode during a production phase, the images can also be used to search for non-

conformities. However, this use does not allow automatic image labeling.  

4.2 A priori labeling 

When possible, using the learning mode on part batches with previously known conformity will automatically 

create a labeled database. 

During the operating preparation procedure (F2 of the GEMMA), the operator will be prompted to select the class 

of parts presented to the machine. This is called a "prior labeling". The learning cycle launches that way, will 

directly record the images in the correct label (class) of the database. 

Once all the parts of the class are recorded in the database, the end of the cycle will enable the training procedure 

button. 

Training is not a mode but a computer procedure that will generate the LA system inference engine. 

4.3 Training 

Training is not really a part of the program ; it’s a model compilation to create a classification program: the 

inference engine. The machine automation will use this engine to perform its classification function. The operator 

will trigger the operating procedures during production. 

It is conceivable to include on the control panel machine interface the inference engine buttons. However, the 

question of program validation remains open. 

5 Performance analysis & validation 

5.1 Performance Factors 

Many factors can impact performance of the LA system. Among them, we can mention the number of epochs, the 

size of the data batches, the ratio between training data and test data. However, it is the constitution and size of the 

database that have a major impact on performance. 

A database where each class contains the same number of elements improve performance compared to a database 

where one class is over or under represented. However, the quantity of data that has the greatest impact on 

performance. Indeed, the more examples of each class are available in the training, the better performance. 

For a given number of parts, there are two ways to increase the training data sets.  

- Data augmentation by a numerical treatment. This involves artificially increasing the number of shots by 

performing image processing operations (for example, cropping, rotation and filtering). 

- Data augmentation through a process loop called Marseilles ducks. When possible, in the a priori labeling phase 

(described above), the parts can be presented in a loop by the machine's conveyor system. This technique makes 

it possible to multiply the number of part shots of a batch. These data will not represent a large variety of parts, 

but will increase the robustness of the LA system by showing the variability of the process. 

5.2 Metrics 

The following metrics can evaluate the LA system using the confusion matrix: 

 

Precision: 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠 +𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠)
 

Sensitivity (or recall): 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠 +𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔)
 

Specificity: 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑟𝑢𝑒𝑁𝑒𝑔

(𝑇𝑟𝑢𝑒𝑁𝑒𝑔 +𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠)
 

 

As seen in the Asymmetry of expected outcome section, these metrics are intended to evaluate the performance of 

the training on a test set. Nevertheless, it is only a post-test; it is not a validation 

The probability of prediction of the class returned by the inference engine during classification cannot be used as 

a criterion for validation either. Indeed, this probability simply indicates how close the presented part is to a learned 

class. For example, if a beech plank is presented to a system trained to distinguish oak from chestnut, the 

probability that the system identifies oak (or chestnut) may be very high! However, it is neither oak nor chestnut. 

This metric cannot be used to validate the system. 



6 Setting & maintenance 

LA system have its own means of programming. Indeed, the Learning mode is a way to program and optimize the 

performance of the machine. This means could be left under the responsibility of an experienced operator, in 

charge of showing how to identify the part classes. 

However, the validation of the new training is still problematic. As during the initial commissioning of the 

machine, only trials on a test set can - in absence of validation - provide an indication of the performance of the 

LA system. A set of standard parts could be kept to compare the results between two new trainings. For perishable 

items (such as fruits or vegetables), a simple set of photos can be used as a set of test objects.  

By design, the LA system does not evolve between two training sessions. However, the process, such as lighting, 

camera position, or objects in front of it, may change. The items themselves may change: such as the variety of 

fruits or vegetables whose quality does the machine test. 

7 Documentation and Operators training 

Like with any other machine, technical documentation and user training materials must be written. However, with 

the learning evolution the documentation will need regular updates. In addition to the timestamp and algorithm 

version information, the documentation should also contain the data used in performance testing. This data should 

be reusable for system verification or analysis. 

Based on the type of job, the training for using this type of equipment should focus on the specific properties of 

machine learning. This training should lead the user to understand how to teach the machine to perform its task. 

The training manual should highlight the issues of bias in the data and performance evaluation. 

8 Conclusion 

The integration of a learning algorithm provides new functionalities to the machine. However, these learning 

functions require taking some precautions in order to make the machine as safe as possible throughout its life 

cycle. 

As from the pre-project stage, a specific need assessment will enable the safest technical solution to be chosen; the 

one requiring the least effort. Then, the automation of the laborious and potentially dangerous task of building the 

database will reduce the handling and the labelling tasks. Because the unreliability of a machine leads to risky 

compensation behaviors, the evaluation of functional performances and the optimization of algorithms need to be 

well described and documented. 

A machine that integrates a learning algorithm will have a more evolutionary control logic than a conventional 

one. Those in charge of operation production can have the responsibility of this learning. However, the outcome 

of the learning algorithms remain inexplicable, and therefore the human/machine interface must be designed with 

great care, which must give the user a good understanding of the procedures and performances of the system. This 

good understanding is also a guarantee of a better safety for the operators. 
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