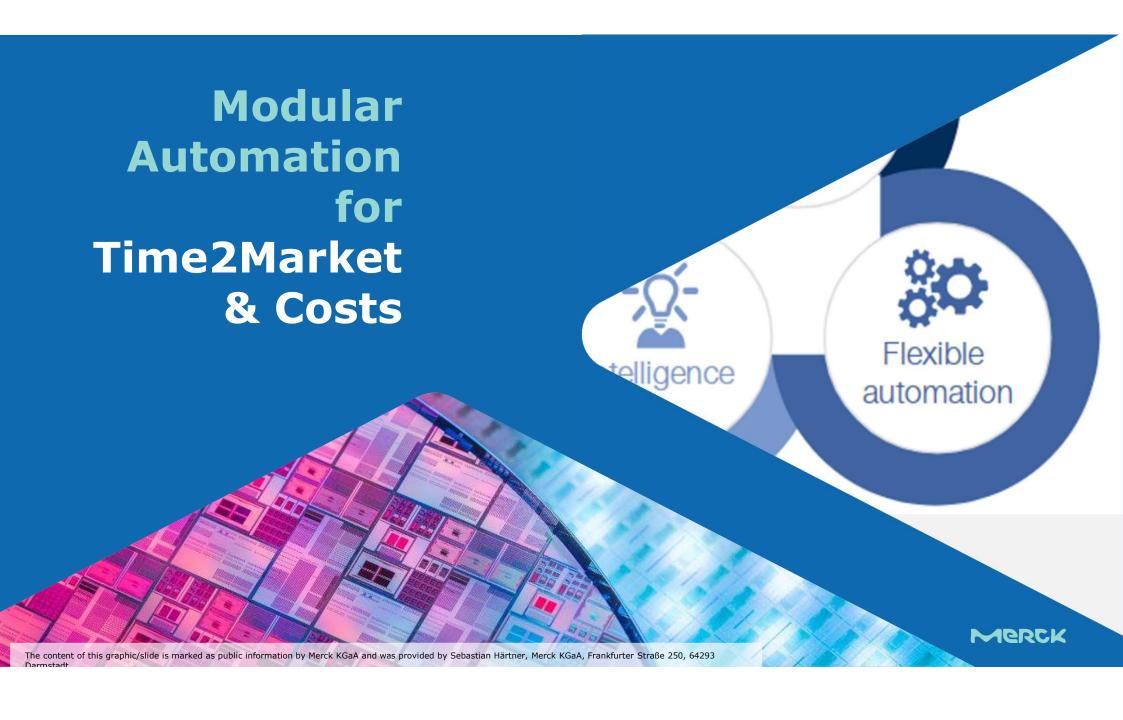
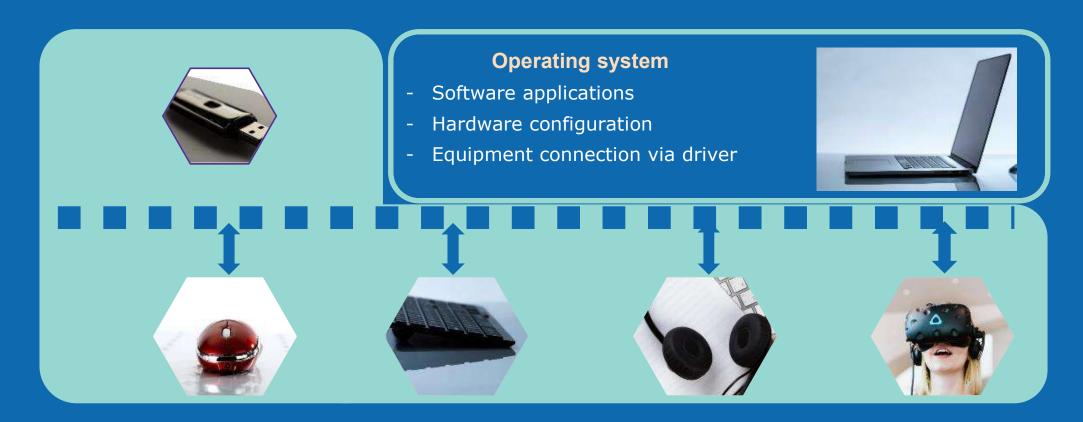


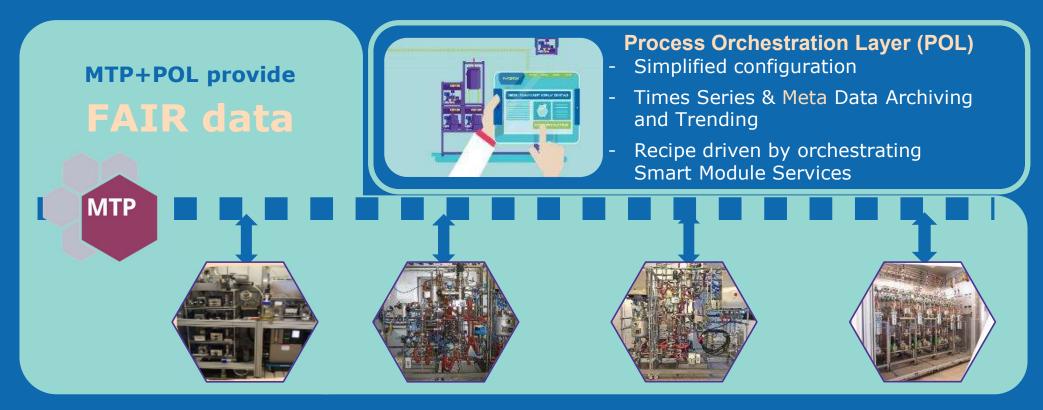
FINNISH SOCIETY OF AUTOMATIO

Smart Manufacturing - MTP in the Pharmaceutical Industry

- **Case study Merck Darmstadt:** First flexible modular plant in a commercial GMP environment based on the MTP standard - Advantages and challenges of flexible modular plants in the GMP
- **Efficient qualification and validation strategies** Optimize initial and recurring qualification and validation activities
- **Success factors** Key factors for the successful implementation, operation, and adaptation of flexible modular plants in the GMP environment
- **Next Steps**

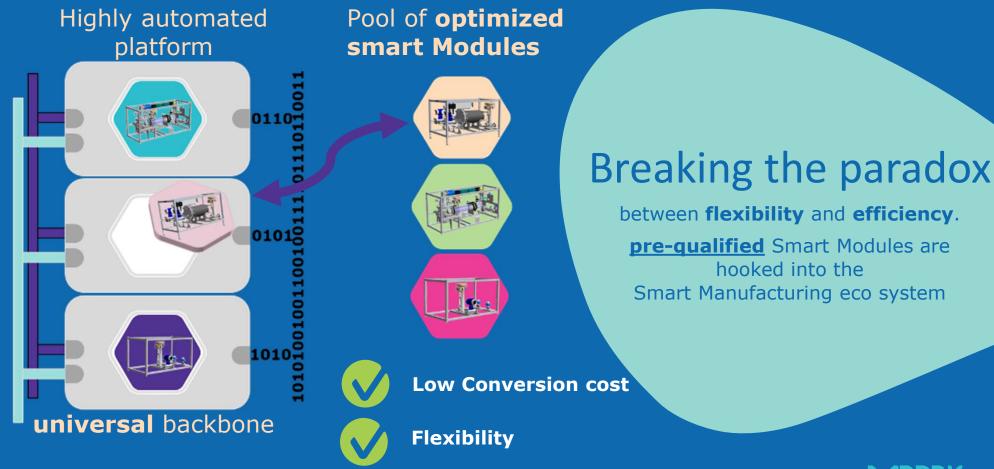






Essential for our current work Connectivity as we all know it: Universal Serial Bus (USB)

Smart Modules for Plug & Produce Implement Smart Modular Production Platform



FAIR: Findability, Accessibility, Interoperability, Reuse

MTP: Module Type Package, soon international Standard IEC 63280 MTP 2.0

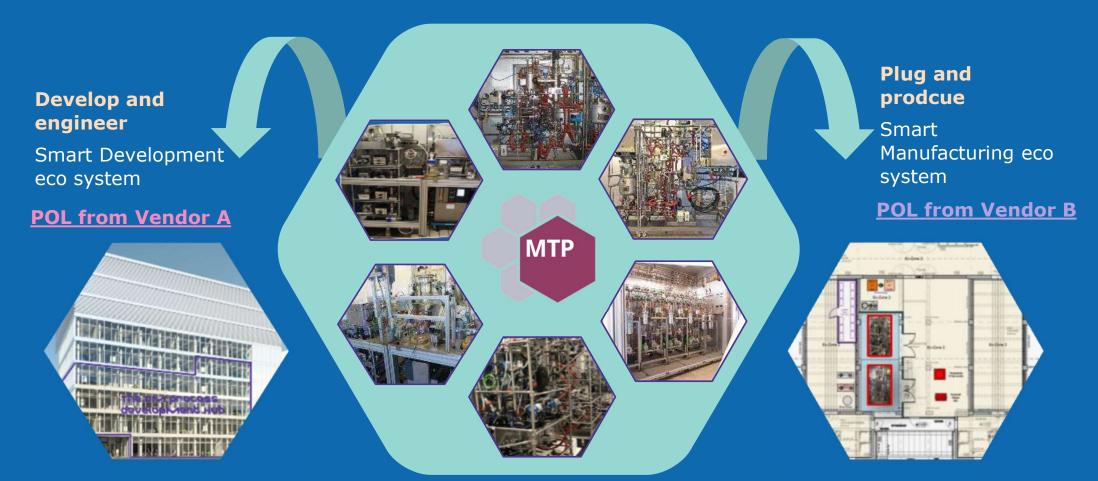
Creating a Smart Platform Technology enabling Smart Manufacturing **The Best Match**

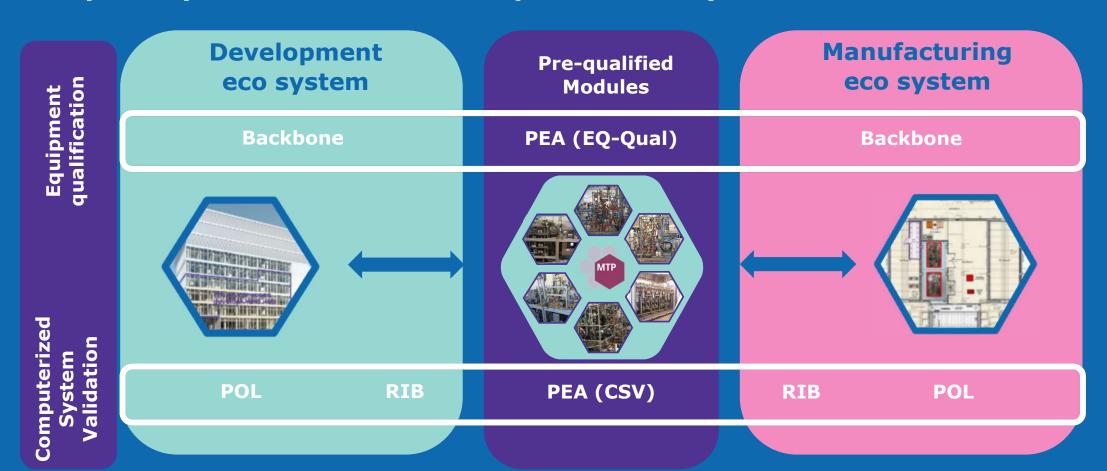
Continuous production technology

Optimize process efficiency (20 years of experience)

Over 100 modules built

Smart Modules optimized for specific unit operations


- High performance of unit operations provide overall process efficiency
- Safe by design (intramodular functional safety)


Product Flexibility

Upside potential "Process to Order" Merging Smart Development and Smart Manufacturing Eco Systems

Upside potential no scale up by leveraging modularized Continuous Manufacturing Speed up tech transfer within qualified ecosystems

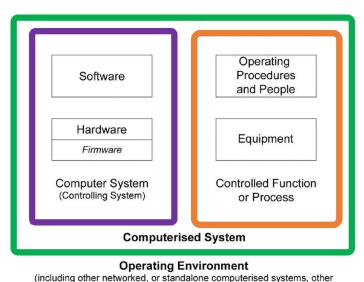
RIB: Runtime interface Bus • POL: Process Orchestration Layer • PEA: Process Equipment Assembly • CSV: Computerized System Validation • EQ-Qual: Equipment Qualification • CM: Continuous Manufacturin

Smart Manufacturing - MTP in the Pharmaceutical Industry

- **Case study Merck Darmstadt:** First flexible modular plant in a commercial GMP environment based on the MTP standard - Advantages and challenges of flexible modular plants in the GMP
- **Efficient qualification and validation strategies** Optimize initial and recurring qualification and validation activities
- **Success factors** Key factors for the successful implementation, operation, and adaptation of flexible modular plants in the GMP environment
- **Next Steps**

Computerized Systems Validation – Basics and terminology

Please also remember:


Computer System ≠ Computerized System

- To confirm <u>fitness for intended use</u> a framework of validation plan and report defines <u>risk-based</u> verification activities for the
- Computer System (Controlling System)
 - Computer System Hardware and Software
- Controlled Function or Process
 - Operating Procedures and People
 - Equipment (sensors, actuators (valves, motors, etc.), pipes, vessels, stirrers, etc.)
- Computerized System (Automated Manufacturing Equipment)
 - Dynamic Interaction of Controlling System with Controlled Function or Process

Considering GAMP® 5 2nd Edition's suggestion:

For <u>Automated Manufacturing Equipment</u>, separate computer system validation should be avoided. Computer system specification and verification should be part of an <u>integrated engineering approach</u> to ensure <u>compliance and fitness for intended use</u> <u>of the complete Automated Manufacturing Equipment.</u>

Figure 2.2: Computerised System – PIC/S Guidance [22]

systems, media, people, equipment and procedures)

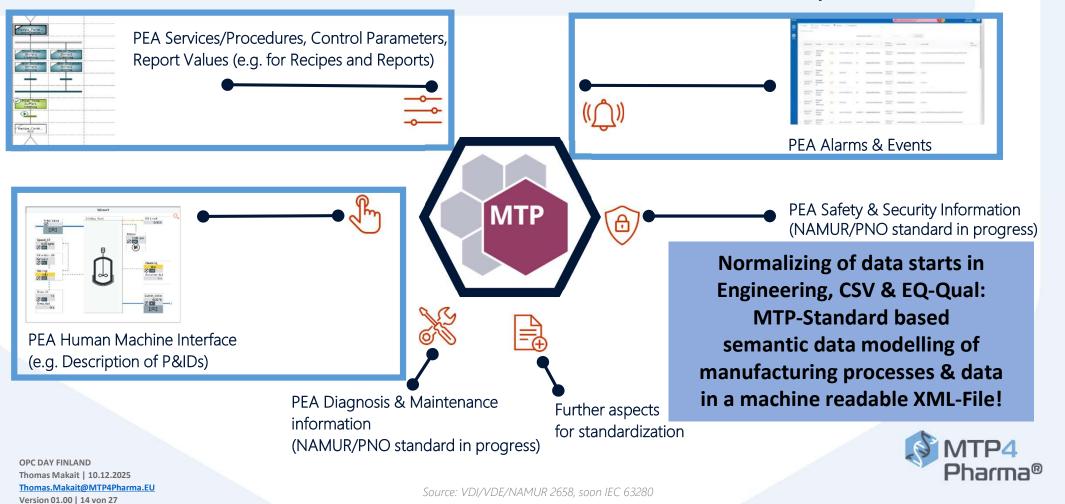
A typical MTP-based modular plant consists of the following elements

In a Modular Plant Operating Environment
the MTP standards defines
a Modular Plant (MP) to consist of
a Process Orchestration Layer (POL), and
automated manufacturing equipment as
Process Equipment Assemblies (PEAs), and

its **Physical Integration**, and the **Functional Integration** of PEAs into the POL based on standardized interface definitions: **Module Type Packages¹ (MTPs)**, and the (Manufacturing) Process Orchestration

 based on pre-defined PEA-automationservices / procedures, parameters and report values

¹ MTPs = (XML-Files) = MTP Manifest


What's in an MTP file?

MTP file contains the MTP Manifest: the "passport" of a PEA module

MTP file describes the module characteristics in a standardized and machine readable way.

MTP-Standards allows to standardize the functional integration

Based on the MTP standard an unheard level of standardization is possible for

- Process engineering
- Equipment engineering
- Automation engineering

and related

Computerized Systems

 Validation including
 Automated Manufacturing
 Equipment Qualification

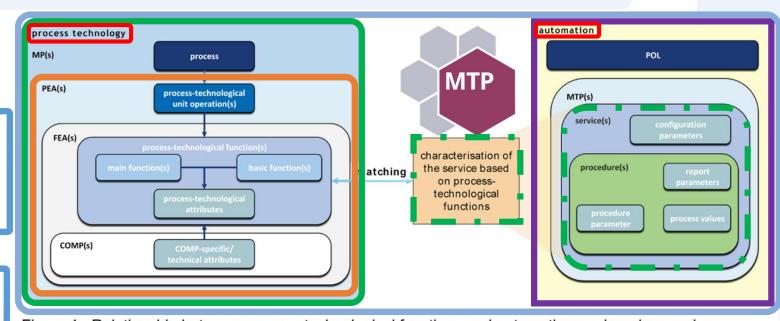


Figure 1. Relationship between process-technological functions and automation engineering services

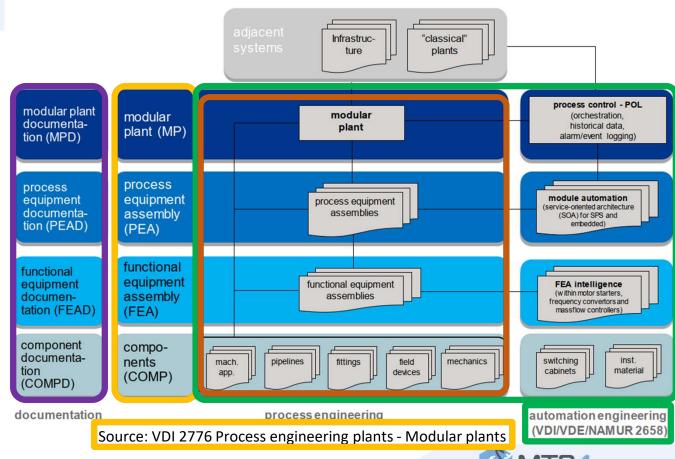
Source: VDI 2776 Process engineering plants - Modular plants

VDI/VDE/NAMUR 2658 Automation engineering of modular systems in the process industry soon **IEC 63280** Automation engineering of modular systems in the process industry

Normalizing of data starts in engineering, CSV & EQ-Qual:

MTP-Standard based semantic data modelling of
manufacturing processes & data based on Automation Services!

MTP-Standards allows to standardize the physical integration


Industry wide standardized

- Modular plant structure
- Documentation structure

allows to standardize

for GxP environments

 Computerized Systems Validation approach and documentation including Automated Manufacturing Equipment qualification approach and documentation

VDI/VDE/NAMUR 2658 will soon be an international Standard IEC 63280 MTP2.0

Smart Manufacturing - MTP in the Pharmaceutical Industry

- **Case study Merck Darmstadt:** First flexible modular plant in a commercial GMP environment based on the MTP standard - Advantages and challenges of flexible modular plants in the GMP
- **Efficient qualification and validation strategies** Optimize initial and recurring qualification and validation activities
- **Success factors** Key factors for the successful implementation, operation, and adaptation of flexible modular plants in the GMP environment
- **Next Steps**

Recommended steps to leverage key benefits of MTP Standard based Modular Plants in GxP-environments

Standardize and streamline Good Engineering Practices (GEP) based on Quality By Design (QbD) Principles: Establish seamless data driven Process-, Equipment- and Automation-Engineering & choose Standard-Modules (if available).

=> Standardize Computerized Systems Validation incl. Equipment Qualification!

Increase operational flexibility and decrease time to market <u>by design</u>
 by taking the following key Operations & Engineering decisions early to

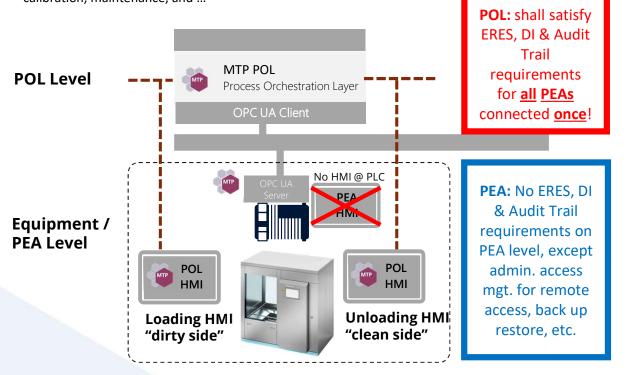
- design Blue Field / Modular Manufacturing Platforms, and to
- specify an Operations Philosophy, enabling a
- Smart Automation Architecture, which is implemented using
- Smart Modules procured pre-qualified²⁾!

to reduce On-Site Computerized Systems Validation incl. Equipment Qualification

- initially
- re-occurring

1) Source: NAMUR; ProcessNet, VDMA, ZVEI)

Reducing **Engineering** Effort¹⁾ by up - 70 % Reducing **Increasing** Time-to-Flexibility1) Market1) by up to by up to +80 % - 50 % Reducing onsite CSV/EQ-QAL²⁾ by up to - 60 %



OPC DAY FINLAND
Thomas Makait | 10.12.2025
Thomas.Makait@MTP4Pharma.EU
Version 01.00 | 18 von 27

²⁾ Term dependent on regulated company QMS.

Smart modular architecture & smart CSV Strategy: Vendor independent One System Approach based on MTP-Standard

Modular Plant Operations Philosophy: Only the POL shall be used for user management, operation, audit trail, data historian / trending, alarm ACK & history, report generation / reporting, calibration, maintenance, and ...

_		
Operation / Function	PEA	POL
Access Management - User - Calibration - Maintenance	- - -	X X X
 Manual operation (e.g. open close valve): Logic code / Service / Procedure implementation Operate 	X -	- X
PEA Automation Services (MTP): - Management Logic - Operate (START, HOLD, STOP,)	X -	- X
Recipes (based on PEA Automation Services): - Configuration / Management - Execution	:	X X
Alarm Management: - Alarm Generation / State - Alarm ACK - Alarm History	X - -	X X
Audit Trail: - Audit Trail generation - Audit Trail history	:	X X
Out of process Operations: - Maintenance - Calibration	:	X X
Reporting - Report generation (template) - Report creation per run (execution)	:	X X

Example of a smart modular architecture allowing to minimize Computerized Systems Validation effort on Automated Manufacturing Equipment / PEA level

Reducing onsite CSV/EQ-QAL²⁾ by up to

- 60 %

Smart Operations Philosophy:

Operation,
Maintenance,
Calibration of
Modules
via Process
Orchestration
Layer (POL)
only!

Equipment / PEA Level

Process Equipment Assembly

OPC DAY FINLAND
Thomas Makait | 10.12.2025
Thomas.Makait@MTP4Pharma.EU
Version 01.00 | 20 von 27

Benefits of this approach:

to implement a <u>Smart Operations Philosophy</u> for <u>Process Equipment Assemblies (PEAs)</u>,

<u>allows regulated companies to cut</u>
PEA Requirements Specifications by up to 50 %!

How? By moving most requirements for Data Integrity (DI), Electronic Records/Signatures (ERES) & Audit Trail to the POL only!

Data Integrity Compliance Risks are minimized!

Moving functions required for PEA Operation to POL level only

- Human Machine Interface (HMI)
- User Management
- Audit Trail
- Alarm Management
- Reporting
- ..

allows PEA vendors to focus verification effort to pre-qualify PEAs during FAT/SAT under QA oversight of the regulated company to

- Verification of Equipment
- explicit MTP-file verification:
 - Functional Verification (OV) executing Services -> CPPs
 - Alarm generation/state of CPPs
 - Param. / Report Values -> CPPs
- PEA Documentation

...

Critical Process Parameters (CPPs)

Smart Manufacturing - MTP in the Pharmaceutical Industry

- **Case study Merck Darmstadt:** First flexible modular plant in a commercial GMP environment based on the MTP standard - Advantages and challenges of flexible modular plants in the GMP
- **Efficient qualification and validation strategies** Optimize initial and recurring qualification and validation activities
- **Success factors** Key factors for the successful implementation, operation, and adaptation of flexible modular plants in the GMP environment
- **Next Steps**

ISPE® working groups supporting Modular Plants in GxP-Environments

Global GAMP® SIG MTP in Pharma

The key objective is an efficient approach for Computerized Systems Validation (CSV) including Equipment Qualification of Modular Plants in GxP environments.

... more

Global Plug & Produce - MTP4ISPE

ISPE working group MTP4ISPE as part of the overall "Plug & Produce" initiative has the objective to further leverage the MTP standard within life-science as it will be a piece of the puzzle for the Pharma 4.0 offering Flexibility, Business efficiency, Reliability, through standardized services defined for each module. AstraZeneca

... more

Outcome:

A common Good Practice Guide (GPG)

Technical Implementation & Computerized System Validation
for Modular Plants according to MTP (Module Type Package)

Modular Plant Good Practice Guide (GPG)

Objective of the guide

- Provide a clear, practical guidance of how to implement and validate modular plants applying the MTP standard
- Cover both greenfield and brownfield scenarios

Target audience:

- Engineering, process, equipment and automation teams in pharmaceutical companies.
- Equipment manufacturers & production line suppliers
- Hardware and software technology providers
- Quality Assurance and Computerized System
 Validation & Equipment Qualification professionals

Modular Plants according to MTP (Module Type Package)

Technical Implementation & Computerized System Validation Good Practice Guide

ISPE® Pharma 4.0® CoP - Plug & Produce Working Group — MTP4ISPE

ISPE® GAMP® SIG MTP in Pharma - Modular Plant Validation and Qualification

Vers. 00.60 (September 2025)

Working paper | ISPE Pharma 4.0 & GAMP INTERNAL USE ONLY. ISPE GAMP MTP Implementation and Validation Guide | DRAFT | CONFIDENTIAL

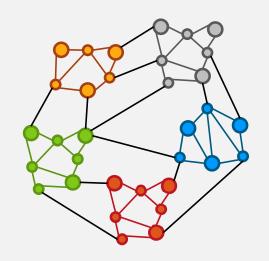
Page 1 of 79

AAS as the Environment for Semantic PEA Datasheet (SPEAD)

SOURCES

STANDARDISED ENVIRONMENT

Asset Administration Shell



OUTPUT

Modular plants based on the MTP standard are a reality in the pharmaceutical industry!

Basel / CH on 14 Oct 2025:

Tech Tuesday @Lonza - ISPE D/A/CH

There, LONZA presented the impact of MTP-based Modular Automation onto on their global CAPEX projects!

Call to action:

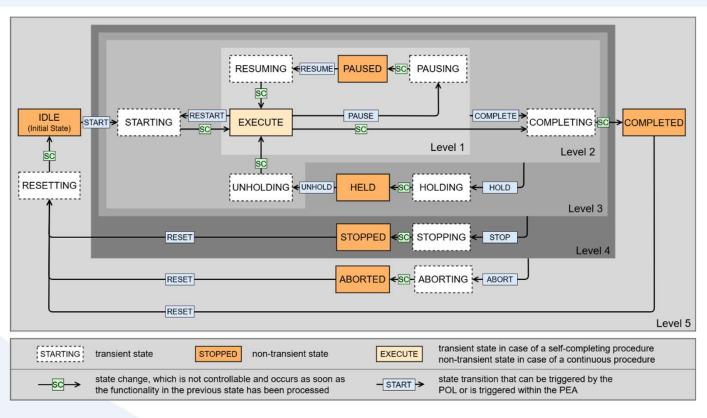
Check whether the next CAPEX project should be implemented as a modular plant based on the MTP standard!

OPC DAY FINLAND
Thomas Makait | 10.12.2025
Thomas.Makait@MTP4Pharma.EU
Version 01.00 | 25 von 27

Back Up Slides

Thomas Makait - MTP4Pharma® - Plug & Produce for Smart Manufacturing

- Owner / Managing Director QPRI / MTP4Pharma®
 Plug & Produce for Smart Manufacturing Intrinsic Quality & Compliance
- Degree in Electrical Engineering / Automation
- Over 26 years experience in the pharmaceutical industry
 Leading roles in engineering, technical compliance and quality assurance
- Over 5 years conception, implementation and validation of Modular Plants
- Supporting industry organisation regarding MTP-based standardization:
 VDI, NAMUR, PROFIBUS e.V. (PNO), ISPE®, GAMP® D-A-CH, BioPhorum
- Leading the Global ISPE® GAMP® Special Interest Group "MTP in Pharma - Modular Plant Validation and Qualification"



PEA Automation Service: Structure of the State Machine

- Level 1 contains the states Execute, Pausing, Paused, and Resuming.
- Level 2 contains the states Starting, Completing, and Unholding as well as level 1.
- Level 3 consists of the states Holding and Held as well as level 2.
- Level 4 contains the states Stopping and Stopped as well as level 3.
- Level 5 contains the states
 Idle, Completed, Resetting, Aborting, and Aborted
 as well as level 4.

Source: Module Type Package Specification MTP 2.0 Part 4: Automation Services and Process Values

